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Linear predictive modeling of patient motion using external sensors 
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INTRODUCTION 
Patient motion is likely to induce mainly two kinds of problems: 1) image registration problems, in the case of rapid images which are 
repeated in time (e.g. in kidney perfusion studies); 2) motion artifacts (ghosting) when longer acquisition times are required (e.g. for 
high spatial resolution). Resulting registration problems are generally ill-posed due to important intensity variations and through plane 
motion. In the presence of motion artifacts, it has been shown that, if motion was known in advance, it would be possible to invert the 
process of artifact production and reconstruct a motion-compensated image (1). Hence both classes of problems would benefit greatly 
of having a predictive model of patient motion as prior knowledge. Several models have already been proposed, based on linear 
prediction, using navigator echo signals as inputs (2). Here we extend and validate the method to the use of external sensors 
measurements (3) (which are continuously available and require no dedicated pulse sequence). A new method is also proposed to 
determine the model coefficients, based on a variational approach. 

METHODS 
Acquisitions were performed on a 1.5 T MR scanner (Signa, GEHC, WI). Physiological signals were acquired using a dedicated 
computer and electronics system presented in (4). Two pneumatic belts are used to monitor respiration (thorax and abdomen), and two 
ECG sensors provide information about the cardiac phase but also about respiration through the R-wave amplitude variation. 
Simultaneous acquisitions of fast MR sagittal images (SSFP, 128x128 matrix, 10 fps) and of all physiological signals are performed in 
different respiration modes, including breathold, free breathing and deep breathing. True displacement fields are determined using the 
Lucas-Kanade optical flow algorithm (OpenCV, Intel). One calibration series (N images in deep breathing) is chosen for computing the 
coefficients α(X) (X=[x y z], for all X in the plane/volume V) of the linear predictive model relating the true displacement fields u(X,t) 
to the external sensors measurements S(t) (S(t)=[S1(t),S2(t),�,SK(t)]T if K sensors are used), by minimizing the functional: 
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R( α∇ ) is a regularization term (R(∇α)=||∇α||² for a Tikhonov 
regularization for example). The solution of this variational 
problem is found by solving the Euler-Lagrange equation. The 
model is then used to predict displacement fields in subsequent 
imaging series, using the estimation û(X,t)=S(t)α(X), with the new 
sensor measurement values. Validation is performed by comparing 
the results of prediction to the true displacement fields in 
subsequent image series. Regions Of Interest (ROI) were also 
placed on different parts of the body (diaphragm, surface of the 
thorax/abdomen) to perform simulations with additional sensors 
inputs (simulated navigator for the diaphragm), and to study the 
linearity between the belt signals and the true motion of the 
thorax/abdomen surface.  

RESULTS 
Results on 6 subjects show a good linearity between the pneumatic 
belts and the surface ROI, even though a slight drift in time can 
occur. If a correction is performed to account for this drift (a linear 
correction was sufficient in our case), these external sensors 
provide good inputs for the model. An example of coefficient 
maps α(X) is given in Fig.1, as well as the results obtained with the 
predicted displacement fields. 

CONCLUSION 
The model can already provide useful prior information about the displacement fields. 
Further work has to be done to optimize the motion detection step, and to determine which 
sensors combination is the best for a given organ. It should be noted that, if navigator echo 
signals might be better correlated with the motion of some organs, external sensors such as 
belts are better correlated with the surface of the body. This is key information for the 
correction of respiration induced artifacts, which are generally ghosts of the image parts 
with the strongest discontinuities such as the thoracic surface or the abdominal fat.  

Fig.1:  
(a) Maps of linear coefficients α for each sensor (1:belt-thorax; 2:belt-
abdomen; 3:ECG1 amplitude; 4:ECG2 amplitude) and each direction 
(X, Y), determined by a calibration series (deep breathing). 
(b) Reference image (some contours are drawn and reported on the α 
maps for anatomical marks) 
(c) Example of motion prediction using the α coefficients on a 
subsequent acquisition (deep breathing too): the black line indicates the 
true motion (optical flow), the red line indicates the model prediction. 
(d) Maximum Intensity Projection (MIP) view of the temporal series in 
which the motion prediction is performed (without/with registration)  
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