Changes of Proton T₁ and T₂ Relaxation Times of Cerebral Metabolites Induced by Repeated Manganese Treatments in

Rat

X. Wang¹, C. Xiao¹, and H. Lei¹

¹State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Science,

Wuhan, Hubei, China, People's Republic of

Introduction Chronic overexposure to manganese leads to selective deposition of the metal in the globus pallidus (GP) and clinical symptoms that resemble those found in Parkinson's disease^[1]. Recently in vivo ¹H MRS was applied to study the effects of Mn neurotoxicity on cerebral metabolism in human and non-human primate^[2-3] exposed to manganese chronically. The results showed that, compared to control, the patients had mildly reduced N-acetylaspartate (NAA)/creatine (Cr) ratio in the basal ganglia^[2], and the manganese-treated non-human primates had significantly decreased NAA/Cr ratio in the frontal white matter^[3]. Yet Mn²⁺ is a paramagnetic ion that can enter neurons via voltage-gated Ca²⁺ channels, and it may affect the T₁ and T₂ relaxation times of both intracellular and extracellular metabolites, thus affecting their quantification. In fact, it has been demonstrated in phantom experiments that the presence of Mn²⁺ reduces the T₁ of NAA and Cr methyl resonance^[4]. In this study, Mn²⁺-induced changes in the T₁ and T₂ of water, NAA and Cr were measured in vivo at 4.7 T in the GP of rats subjected to repeated manganese exposures.

Materials and Methods Male SD rats (180-250 g) received daily i.p. injection of MnCl₂ (120 mmol/L, 3 ml/kg) for five consecutive days. T₁-weighted imaging and in vivo ¹H MRS were performed on isoflurane (1.5-2.0%, in 70:30 N₂O /O₂) anesthetized rats before injection, on 2d before the 2nd injection and 1d after the last injection (i.e., on 6d) on a 4.7T/30cm Bruker Biospec scanner. A 12-cm diameter Helmholtz volume coil was used for excitation and a 2.5-cm diameter surface coil for reception. A PRESS sequence was used to acquire ¹H spectra from the GP with a voxel size of 2.5 mm×2.5 mm (Fig. 1). Spectral data obtained in saturation-recovery (SR) experiments were used to calculate T₁ of metabolites, and the changes of metabolite peak intensities with total TE was used to calculate T₂. the T₁ of water and metabolites was measured with TE 136 ms and 9 TR values ranging from 0.5 to 10 s, and the T₂ with TR=2 s and 6 TE values ranging from 30 to 272 ms. Statistical analysis was performed with one-way ANOVA followed by post hoc Tukey's test.

Results A ¹H spectrum acquired from the GP of a Mn^{2+} -treated rat is shown in Fig. 1. Compared to control, the T₁ and T₂ of NAA and Cr methyl resonance at 2.02 ppm and 3.0 ppm had insignificant decreases after the 1st treatment, while the T₁ and T₂ of water reduced significantly by about 26±5% and 6±1%, respectively. After 5 Mn^{2+} -treatments, the T₁ of NAA, Cr and water reduced significantly by 14±16%, 35±24% and 41±7%, and the T₂ by 26±15%, 12±10% and 12±1%, respectively.

Discussion The T_1 and T_2 of water decreased significantly already after the first treatment and further reduced after 5 treatments, suggesting that the concentration of Mn^{2+} in the GP increased as the rats had more Mn^{2+} treatments, agreeing with the results of Hazell et al^[5]. It was estimated that at the injection dose used in this study, the Mn^{2+} concentrations in the GP were about 1.6 µg/g and 7.3 µg/g, respectively, after one and five treatments. The T_1 and T_2 of NAA and Cr had a trend to decrease after the first treatment and such reductions became statistically significant after 5 treatments, suggesting that the T_1 and T_2 of metabolite also depend on the Mn^{2+} concentration in the brain region where they are measured. Therefore, when in vivo ¹H MRS is used to assess Mn^{2+} -induced cerebral metabolic changes, the effects of relaxation time changes induced by the presence of Mn^{2+} should be taken into account in metabolite quantification, and this can be done by optimizing the spectroscopic acquisition parameters^[4]. For example, using the T_1 and T_2 relaxation data obtained in this study and assuming the concentrations of metabolites do not changes, relaxation-induced signal intensity changes for NAA and Cr methyl resonance after 5 Mn^{2+} treatments would be 1.1% and 0.9%, respectively, if TR of 6 s and TE of 20 ms are used, and the changes will increase to 4.4% and 11.7%, respectively, if TR of 1 s and TE of 136 ms are used.

Acknowledgements Supported by grants 10234070, 30370419 and 30400136 from Natural Science Foundation of China. **References** [1]Kim JW, et al, J Korean Med Sci, 1998 13(4):437-9. [2]Kim EA, et al, Neurotoxicology, 2006, In press. [3]Guilarte TR, et al, Toxicol Sci, 2006 94(2):351-8. [4]Madsen KS, Proc. Intl. Soc. Mag Reson Med, 2006:1489. [5]Hazell AS, et al, Neurosci Lett, 2006 396(3):167-71.

Figure 2: T_1 (A) and T_2 (B) relaxation times of water and metabolites in the globus pallidus of control rats (con) and rats treated with MnCl₂ for 1 day (1d) and 5 days (5d). *p<0.05, compared to control, # p<0.05, compared to 1d.