Comparative response to focal cerebral ischemia of C57Blj6, Trek-1-/- and Traak-/- mice

C. Laigle¹, A. Viola¹, S. Confort-Gouny¹, Y. Le Fur¹, N. Guy², M. Lazdunski², C. Heurteaux², and P. Cozzone¹

¹Faculté de Médecine la Timone, Université de la Méditerranée, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Marseille, France, ²Institut de Pharmacologie Moléculaire et Cellulaire (I.P.M.C.), UMR 6097, C.N.R.S/U.N.S.A, Valbonne, France

Introduction

 K_2P channels are widely distributed in CNS. They are involved in many physiological processes and show various regulatory mechanisms. Two members of this family, TREK-1 and TRAAK, are activated by potent neuroprotectors such as polyunsaturated fatty acids. The disruption of their genes leads to a modified sensitivity to ischemia, which suggests a role for them in the pathophysiology of cerebral ischemia. Our aim was to determine the effects of this gene disruption in a murine model of cerebral stroke.

Subjects and Methods

Six-month old male C57Blj6, Trek-1^{-/-} and Traak^{-/-} mice were used. Focal cerebral ischemia was induced by reversible middle cerebral artery occlusion. Mice were explored on a 4.7 T horizontal Bruker 47/30 AVANCE Biospec MR system. MRI included multi-slice T_2 -WI, T_2 *-WI, diffusion MRI, perfusion MRI, and angiography (performed at 11.75 T). Metabolic explorations included ¹H-MRS and ³¹P-MRS.

Results

MR angiography validated the surgical procedure (Figure 1). Figure 1 : MRA before, during and after mcao in a C57blj6 mouse

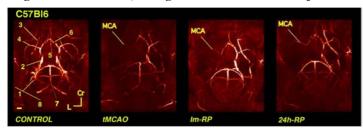


Figure 3: Comparison of infarct volumes

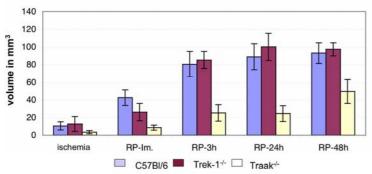
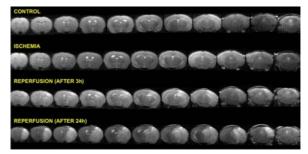



Figure 2 : Examples of T₂-weighted images of a C57Blj6 mouse

T₂-weighted images were used to quantify cerebral infarct (Figure 2). A smaller infarct was observed in Traak^{-/-} mice (Figure 3), whereas Trek-1^{-/-} mice showed higher volumes of infarct when compared to the control strain.

From a metabolic point of view, C57Blj6, Trek-1^{-/-} and Traak^{-/-} mice showed high lactate upon ischemia that could persist up to 48 h after reperfusion in Trek-1^{-/-} mice, whereas Traak^{-/-} mice recovered after 3 h. In addition, reduced levels of N-acetylaspartate and choline were observed in C57Blj6 and Trek-1^{-/-} mice. Marked impairment of energy metabolism was observed in C57Blj6 and Trek-1^{-/-} mice but was less important in Traak^{-/-} mice. After reperfusion, a rapid recovery of the phosphocreatine level was observed in Traak^{-/-} mice, whereas the amelioration was delayed in C57Blj6 and was not observed in Trek-1^{-/-} mice after 48 h.

Discussion:

Disruption of TREK-1 gene leads to a higher vulnerability to ischemic insults whereas that of TRAAK seems associated with resistance to brain damage. Our findings suggest that specific pharmacological modulation of these K^+ channels may represent a promising therapeutic target for treatment and/or prevention of ischemic damage.