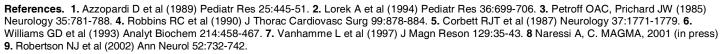
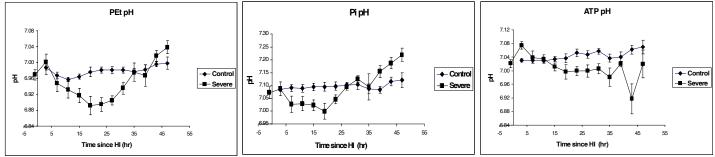
Intracellular pH after Perinatal Cerebral Hypoxia-Ischaemia Estimated from Nucleotide Triphosphate, Phosphoethanolamine, and Inorganic Phosphate Chemical Shifts

E. B. Cady¹, A. Bainbridge², A. Lorek³, J. Penrice³, O. Iwata³, J. Wyatt³, and N. J. Robertson⁴


¹Medical Physics and Bioengineering, University College London Hospitals NHS Foundation Trust, London, United Kingdom, ²Medical Physics and Bioengineering, University London Hospitals NHS Foundation Trust, London, United Kingdom, ³Paediatrics, University College London, London, United Kingdom, ⁴Obstetrics and Gynaecology, University College London, London, United Kingdom


Introduction. Shortly after birth asphyxia, phosphorus (³¹P) magnetic resonance spectroscopy shows apparently normal cerebral energetics. Phosphocreatine (PCr) and nucleotide triphosphate (NTP, mainly adenosine triphosphate (ATP)) later decline and inorganic phosphate (Pi) increases - the lower PCr and NTP the worse the outcome (1). These changes ("secondary energy failure" (SEF)) were replicated in the piglet: transient hypoxia-ischaemia (HI) caused intracellular acidosis; after HI, cerebral energy metabolism and intracellular pH (pH_i) normalised temporarily followed by SEF unaccompanied by overt acidosis (2). The Pi chemical shift (δ_{Pi}) is often used to estimate pH_i (3). However, this resonance includes extracellular and cytosolic Pi (4). Phosphoethanolamine (PEt) and γ - and β -ATP chemical shifts also depend on pH (5,6) and, contrastingly, are intracellular probes. Pi and PEt may exist in both viable and dead cells; however, ATP only exists in viable cells. This study aimed to compare pH_i - derived using Pi, PEt, and ATP - according to SEF severity in a larger cohort of piglets.

Methods. Experiments followed UK guidelines. Thirty-three healthy piglets (aged <24 hr) were anesthetised, and physiologically monitored and maintained (2): 27 had ~ 1 hr transient HI (inspired oxygen fraction reduced to ~0.12 during reversible bilateral carotid-artery occlusion); six were controls. A 25-mm diameter ³¹P-tuned surface coil was used at 7 Tesla with single-pulse acquisition (10 s repetition time). Spectra were analysed by AMARES (7,8). Since reduced NTP predicts adversity (1), the minimum NTP/exchangeable phosphate pool (EPP = Pi + PCr + (2γ + β)-NTP) from 6 hr after HI (NTP_{min}) was used to define injury groups: mild (0.210 > NTP_{min} > 0.165, n = 8); moderate (0.164 > NTP_{min} > 0.120, n = 9); and severe (0.119 > NTP_{min} > 0.075, n = 10). pH_i calculations used: Pi pH = 6.77 + log₁₀((δ_{Pet} - 3.29)/(5.68 - δ_{Pet})) (5); and MAGPAC estimated ATP pH (6). Statistical analysis used 2-tailed t-tests with unequal variances.

<u>Results.</u> For clarity results are only presented for controls and severe injury - mild and moderate injury results were intermediate. Compared to controls, severe-injury PEt pH_i (see figures; mean \pm SEM) was mildly acid 13-33 hr after HI (all p < .05) with most significance 17-21 (p < .01), 21-25 (p < .001), and 25-29 hr (p < .002). ATP pH_i was alkaline at 1-5 hr (p < .004) and acid from 21-33 hr (21-25 hr p < .01; 25-33 hr p < .05) and at 41-45 hr (p < .05). ATP pH_i errors increased at 40-50 hr due to low ATP signal. Pi pH was acid at 13-25 hr and alkaline after 37 hr (all p < .05).

Discussion and Conclusions. Significant, but subtly different, pH_i measure changes were observed during SEF: in particular, there was a previously unobserved mild acidosis. The Pi pH alkalosis after 37 hr agrees with neonatal encephalopathy observations (9) and may be due to up-regulation of the sodium proton exchanger or eventual cytosolic equilibration with extracellular pH. ATP pH_i probing only viable cells, showed no such alkalosis. Precise pH_i measurement during SEF may elucidate mechanisms of post-HI cell death.

