Left-Right Differences in ¹H₂O T₁ Values of Multiple Sclerosis Normal Appearing Brain Tissue

J. M. Njus¹, L. Vigeland¹, X. Li^{1,2}, C. S. Springer^{1,2}, M. Taylor³, F. W. Telang⁴, P. K. Coyle³, and W. D. Rooney^{1,2}

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States, ²Chemistry Department, Brookhaven National Laboratory, Upton, New York, United States, ³Neurology Department, Stony Brook University, Stony Brook, New York, United States, ⁴Medical Department, Brookhaven National Laboratory, Upton, New York, United States

Introduction

There is accumulating evidence supporting the concept of innate hemispheric asymmetries in normal human brain structure and physiology.¹⁻¹⁷ Furthermore, these interhemispheric inequalities for healthy adults are likely different between the sexes.^{2-4,7-9} Therefore, it is conceivable that pathological changes in the normal-appearing (NA) brain tissue of subjects with multiple sclerosis (MS) may be different between hemispheres, and between sexes. Of many MS studies, only a few have investigated possible hemispheric differences in disease expression.^{18,19} A recent quantitative MR study²⁰ found significant increases in the mean NA white matter (NAWM) and NA gray matter (NAGM) T₁ values of MS subjects compared with healthy control (HC) subjects. The data suggested that the mean NAGM T₁ value increase was due to the women (no significant differences were observed for men), whereas that for MS NAWM T₁ values was similar between the sexes. In this report, we delve further into sex-related NAGM T₁ changes by examining possible hemispheric differences in increased mean NAWM and NAGM T₁ values in a substantially larger group of MS and HC subjects.

Methods

46 HC subjects [18 W, mean age 33 (\pm 10) y, and 28 M, mean age 39 (\pm 12) y] and 33 MS subjects [23 W, mean age 36 (\pm 8) y, and 10 M, mean age 42 (\pm 7) y] provided informed consent before participating in this study. All MR data were obtained using a 4 T Varian INOVA instrument, and employing a head birdcage RF transceiver coil. Experimental details pertaining to data collection and quantitative T₁ mapping are similar to the literature.²⁰ Bilateral regions of interest (ROIs) were carefully selected from three interior NAGM areas [putamen, thalamus, and the head of caudate nucleus] and five NAWM structures [centrum semiovale, genu of corpus callosum, splenium of corpus callosum, forceps major, and forceps minor]. All T₁ values and standard deviations (SD) are given in msec units. Hemispheric and group comparisons were performed, respectively, using two-tailed t-tests for paired and unpaired data. All P values were corrected for multiple comparisons. <u>Results</u>

We find significantly (P < 0.05) increased mean T₁ values of ~5% in MS NAWM compared to HC, with similar increases for both men and women (Figure 1A). The overall average T₁ values were increased by ~2% in MS NAGM, but were observed only in the women, for whom the increase was ~3%, Fig. 1B. No significant hemispheric differences in mean NAWM T₁ values were observed in male and female HC and MS groups, Fig. 1A, but significant hemispheric differences (right > left) in mean NAGM T₁ values were found in the HC (~2%) and MS (~3%) men, and in the MS (~1%) women, Fig. 1B.

Discussion

The findings of significant sex-independent and sex-dependent increases, respectively, in the mean MS NAWM and MS NAGM 1 H₂O T₁ values, is similar to findings from a study of fewer subjects.²⁰ Increased T₁ values likely reflect diffuse inflammation and edema in MS. Regarding hemispheric inequality, no significant differences in NAWM T₁ values were observed for either sex in the MS and HC groups (Fig. 1A), whereas significant right > left hemispheric differences were found in the NAGM T₁ values of the male HC and MS subjects, and female MS subjects (Fig. 1B). The finding of hemispheric differences in NAGM, but not NAWM, suggests that the differences are real, and not an experimental artifact. Our hemispheric results are consistent with a 1.5 T T₁ study,¹⁷ which found no hemispherical differences in white matter T₁ values but significant (right > left) inequalities in the internal gray matter T₁ values of healthy adults. However, the mean white matter T₁ values did reveal a right > left trend in the male MS and HC groups, and female MS group, which suggests that asymmetry does exist, but to a lesser degree than that of gray matter. In fact, a quantitative 1.5 T MR study reported significant asymmetry in the white matter MTR values of healthy adults.¹⁵ Though sex-related differences in internal gray matter T₁ values were not examined in the 1.5 T study,¹⁷ our 4 T results indicate that the hemispheric asymmetry in mean HC NAGM T₁ values is due to the men. ⁹ Furthermore, our lack of significant laterality of T₁ values in HC women is consistent with no hemispheric difference in glucose metabolism.⁹ The same rationale may be applied to the observed hemispheric differences in HC women is consistent with no hemispheric difference in glucose metabolism.¹⁸ These findings suggest possible hemispheric differences in MS disease expression between the sexes.

NMSS RG 3168A1, NIH NS 040801

References

Geschwind, Levitsky, Science 161;186-187 (1968). 2. Wisniewski, Psychoneuroendocrinology 23;519-547 (1998). 3. Gur, Gur, Obrist, Hungerbuhler, Skolnick, Reivich, Science 217;659-661 (1982). 4. Gur, Mozley, Mozley, Resnick, Karp, Alavi, Arnold, Gur, Science 267;528-531(1995). 5. Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak, NeuroImage 14;685-700 (2001). 6. Raz, Torres, Acker, Neurobiol. Learning and Memory 63;133-142 (1995). 7. Kovalev, Kruggel, Cramon, NeuroImage 19;895-905 (2003). 8. Gur, Turetsky, Matsui, Yan, Bilker, Hughett, Gur, J. Neurosci.19;4065-4072 (1999). 9. Kawachi, Ishii, Sakamoto, Matsui, Mori, Sasaki, J. Neurol. Sci. 199;79-83 (2002). 10. Jayasundar, Raghunathan, MRI 15;223-234 (1997). 11. Peterson, Gore, Riddle, Cohen, Leckman, Psych. Res. Neuroimag. 55;205-221 (1994). 12. Supprian, Hofmann, Warmuth-Metz, Franzek, Becker, Psych. Res. 75;173-182 (1997). 13. Buchel, Raedler, Sommer, Sach, Weiller, Koch, Cereb. Cortex 14;945-951 (2004). 14. Park, Westin, Kubicki, Maier, Niznikiewicz, Baer, Frumin, Kikinis, Jolesz, McCarley, Shenton, NeuroImage 23;213-223(2004). 15. Armstrong, Traipe, Hunter, Haselgrove, Ledakis, Tallent, Shera, Buchem, AJNR 25;977-984 (2004). 16. Wansapura, Holland, Dunn, Ball, JMRI 9;531-538 (1999). 17. Steen, Redick, Ogg, MRI 18;361-368 (2000). 18. Pozzilli, Fieschi, Perani, Paulesu, Comi, Bastianello, Bernardi, Boztao, Canal, D'Antona, Lenzi, Martinelli, Fazio, J. Neurol. Sci. 112;51-57 (1992). 19. Prinster, Quarantelli, Orefice, Lanzillo, Brunetti, Molica, Salvatore, Morra, Coppola, Vacca, Alfano, Salvatore, NeuroImage 29;859-867 (2006). 20. Njus, Vigeland, Li, Springer, Taylor, Telang, Coyle, Rooney, Proc. Intl. Soc. Mag. Reson. Med. 14;2101 (2006).