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Introduction 
 Image viewing and manipulation is common on MR scanners and workstations as a convenient means of 
magnifying, rotating, and shifting of the data for closer inspection.  When an image is pulled out of a database and 
interaction with this data requires information to be made available off of the Cartesian grid, interpolation is used to 
determine the missing information.   A cubic interpolation kernel is often used because it does not suffer from the 
same artifacts that can be caused by nearest neighbor or linear interpolation, while still being small enough in size to 
be computationally reasonable.  This limited kernel support can still have a low-pass effect on the image however.  
Because of this, image reconstructions often zero-pad acquired k-space data and insert what is equivalent to a sinc-
interpolated image into the database.  Evaluated here, is an alternative where an acquired-size, complex image is 
made available to the display and generalized interpolation is used on this data for improved spatial resolution. 
 
Methods 
 To quantify the overall impact of the interpolation procedures described below, each image is magnified by 
a factor ranging from 1.1 to 4.0 times the original x and y dimensions in increments of 0.1.  For example, a 256x256 
image magnified by 1.5 in this experiment will yield a 384x384 image.  As MR reconstruction often provides zero-
padded DFT-based interpolated images today, this will be used as a standard of reference to compare against.   

The first interpolation kernel considered is the four-point cubic spline (1) which, implemented separably, 
requires eight multiply-adds per pixel of the output image.  The second is a generalized interpolation method that 
involves pre-filtering of the image data, followed by interpolation of the filtered image.  From a category of 
functions that give maximal order interpolation for a minimal amount of support (MOMS) [1], the four-point cubic 
o-MOMS (2) function is used as the interpolant.  The pre-filter applied is specifically designed for use with this 
interpolant and is well described in [2].  Due to the equivalent support, the compute time for both methods will be 
the same with exception of the additional pre-filtering step in the o-MOMS processing, which becomes negligible as 
the size of the magnified image increases. 
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In addition to the interpolation functions considered above, the impact of performing magnification on the 
magnitude image versus the magnification of real and imaginary components separately is compared.  The 
interpolation time will take twice as long for this complex case. 

Raw data sets were acquired for retrospective reconstruction from a phantom with a radial structure, the 
ACR phantom (Fig 1a), and a T1-weighted brain.  All three data sets have a 256x256 acquisition size, and were 
collected from a GE Signa HDx 1.5 T scanner with EchoSpeed gradients (GE Healthcare, Waukesha, WI, United  
States) using a single channel head coil.  
 
Results 
 For each magnification performed, a measurement was made (3) to evaluate how well the result of an 
interpolation experiment ( g ) corresponds to the expected result [2], which in this case is the image from zero-

padded interpolation ( f ).  Table 1 contains the mean and standard deviation of this measurement across the range of 

magnifications (1.1 to 4.0x) for each interpolation type.  As shown for the ACR case in Fig 1b and 1c, and consistent 
across all three images (radial, ACR & brain), using complex data along with generalized interpolation improved the 
likeness to results from a complex, sinc interpolation.  For visual comparison, the ACR phantom resolution holes 
from a 3.0x magnification are displayed for the complex sinc (Fig 1d), cubic interpolation of magnitude data (Fig 
1e), and o-MOMS interpolation of complex data (Fig 1f).                                                                                                                                     
Table 1: 1.1-4.0x magnification results from Eq. 3, in mean (std. dev.)                                                                 
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Discussion 
 Improved magnification of MR images has been demonstrated through higher order interpolation of complex data.  While applied in two 
dimensions for this analysis, the separable interpolation can be used for any number of dimensions of data being magnified. 
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Interpolation Radial ACR Brain 
Cubic (magnitude) 54.6 (0.127) 69.1 (0.256) 61.4 (0.205) 
o-MOMS3 (magnitude) 61.0 (0.034) 71.9 (0.144) 64.7 (0.104) 
Cubic (complex) 55.5 (0.139) 75.1 (0.413) 65.7 (0.288) 
o-MOMS3 (complex) 62.9 (0.026) 82.7 (0.137) 72.9 (0.102) 
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Fig 1: (a)ACR phantom image. 
Difference of complex sinc 3.0x 
magnification compared to (b) 
magnitude cubic,  (c) complex 
oMOMS. ACR Resolution 
holes after 3.0x zoom of (d) 
sinc, (e) magnitude cubic, (f) 
complex oMOMS. 
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