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INTRODUCTION  
Post-acquisition denoising of MR images is of importance for clinical diagnosis and computerized analysis, such as tissue classification and segmentation. It has been 
shown that the noise in MR magnitude images follows a Rician distribution, which is signal-dependent when SNR is low. It is particularly difficult to remove the 
random fluctuations and bias introduced by Rician noise.  The objective of this paper is to estimate the noise free signal from MR magnitude images. We model images 
as random fields and present a Non-Local Maximum Likelihood (NLML) method for Rician noise reduction in the spirit of Non-Local (NL) means filtering [1]. Our 
method yields an optimal estimation result [2][3] such that it is more accurate in recovering the true signal from Rician noise than NL means in the sense of root mean 
square (RMS) error as well as preserving/enhancing contrast between tissues, especially when SNR is very low. It also performs better than conventional Local 
Maximum Likelihood (LML) in reserving and defining sharp tissue boundaries. 
THEORY  
In MRI, the raw data measured through a quadrature detector are intrinsically complex valued and corrupted by zero mean Gaussian-distributed noise. The real and the 
imaginary images are reconstructed by an inverse Fourier transform, which will preserve the Gaussian characteristics of the noise, since it is a linear and orthogonal 
transform. However, the noise is no longer Gaussian for magnitude images: the nonlinear mapping changes it from Gaussian to Rician. Let us consider a region of 
constant noise free signal amplitude A.  For N independent measured magnitude pixels m1,m2,�,mn, which are degraded by a zero-mean Gaussian noise of standard 
deviation σ , the joint PDF is pm = ∏i (Mi /σ 2  )⋅exp[-(Mi

2+A2 )/2σ 2 ]⋅I0(AMi  /σ 2), where Mi is the magnitude variable corresponding to the observation mi; and I0 is the 
zeroth order modified Bessel function of the first kind. By maximizing the log likelihood function logL = ∑i log(mi/σ 2 )- ∑i (mi

2+A2) / 2σ 2 + ∑i log I0(Ami  /σ 2), we 
have Aest = arg{maxA(logL)}if σ 2 can be considered known. When A<<σ, the Rician PDF approaches the Rayleigh, pm = ∏i (Mi /σ 2  )⋅exp[(-Mi

2 )/2σ 2 ]. ML estimation 
of σ 2 is σest 

2 = (1/2N) ∑i mi
2. Indeed, typical MR images usually include an empty region of air outside the tissue of interest, so noise variance σ 2 can be well estimated 

from the background region.  
METHODS 
The key part of ML estimation is how to identify regions containing constant A. The most straightforward strategy, referred as LML, is to draw a window around one 
pixel, just like most commonly used smoothing filters, and claim that if the window is small enough, the underlying amplitude can be considered as a constant. 
However, this conventional approach usually makes restored images look blurred or unfocused near the edges. Inspired by the NL means approach [1], we assume that 
pixels which have similar neighborhoods come from the same distribution. In other words, the intensity of pixel i is predicted by using its non-local neighborhood, 
which is any set of pixels j in the image such that the window around j is similar to the window around i. To better adapt to the image, the similarity windows can have 
different shapes and sizes. For a given pixel i, we consider a square window ϖi of fixed size around it, for the simplicity. We denote all pixels within ϖi as a vector ν(ϖi). 
The distances between i and any other pixel j in the image is measured by dij =||ν(ϖi)- ν(ϖj)||. Finally, we define the nearest k neighbors of i as its non-local 
neighborhood Ν i , which is used to predict noise free amplitude via ML. Three criteria are taking into account in the comparison of denoising methods: 1. RMS error, 
which is defined as sqrt( ||A-Aest|| / N ); the better denoising technique will produce the smaller RMS, that is, the denoised image is closer to the true image; 2. Contrast, 
which is defined as abs[mean(mtissue1)-mean(mtissue2)] / [mean(mtissue1) + mean(mtissue2)]. The bias introduced by Rician noise tends to reduce the contrast between tissues, 
and a good denoising method should have the ability of improving the contrast; 3. Display, by which the denoising methods can be compared visually.  
RESULTS AND DISCUSSIONS  
To evaluate proposed technique quantitatively according to RMS and Contrast, a simulated image of 150 × 150 was used, which contained 2 tissues with original 
contrast of 0.33. Rician noises with different σ 2 were added to the original image to generate noisy images with SNR of 7, 5, 3.5, 2.33, 1.75, 1.4 and 1.17, respectively. 
The SNR is defined as A/σ. Fig.1 shows that our NLML produces lowest RMS when SNR is less than 5, which means NLML performs better than the other two 
methods in recovering true signal when SNR is very small; while when SNR is large, the Rician distribution tends to be Gaussian, so RMS produced by the three 
methods are almost the same. In addition, Fig.1 also shows that the restored image by NLML presents the highest contrast, which means NLML is more effective in 
preserving the contrast of the noiseless image. Moreover, qualitatively or visually, we compared three methods using simulated MR data obtained via BrainWeb[4] , as 
shown in Fig.2.  Restored images via NLML appear clearer and boundaries are much better defined. On the contrary, detailed structures tend to be lost and contrast 
between tissues is reduced in restored image via NLmeans, and LML makes denoised image look blur and unfocused. In summary, our NLML yields more accurate 
result in MR image denoising, especially when the SNR is very small. It also has ability of preserving the original contrast between different tissues as well as of 
preserving and better defining tissue boundaries. 
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Fig. 1 Performance comparison of NLML to LML and NLmeans. 
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Fig.2. Effects of various denosing methods. (a) Noiseless T1 image; (b) 
Noisy image (Gray matter SNR is about 3.3); (c) Denoised image by 
NLmeans; (d) Denoised image by LML; (e) Denoised image by NLML. 
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