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Introduction 
 The Weisskoff test for temporal stability consists of a plot of the reciprocal of the temporal signal-to-noise ratio 1/TSNRn vs side length n for a square ROI 
defined for a time series of epi images of a uniform phantom.  The temporal signal-to-noise ratio is the average divided by the standard deviation of the time series of 
the sum of the signals in an ROI.  Weisskoff (1) observed that the data diverge from the expected 1/n dependence, and suggested that the divergence could serve as a 
measure of scanner instability.  Bodurka (2) later observed that the data are well described by a function of the form  

   SNR)*n /()SNR)*l*(n(1 1/TSNRn 2+= ,       [1]  

where the parameters λ and SNR characterize the scanner performance.  The present work presents a derivation of Equation [1] from the simple assumption that the 
scanner instability causes the gain from time point to point to vary stochastically, and relates the parameter λ to the standard deviation of the gain. 
Theory 
 The signal iS of voxel i in an MR image of a uniform phantom can be written as ii NSS += 0  , where 0S  is the �true� signal and iN  is the noise.  If iN  is 

primarily thermal noise, it is well described as a Gaussian random variable with mean 0 and variance 2
Nσ : 0=iN , 22

NiN σ= .  We assume that the statistics of the 

noise is the same in all voxels, and that the noise in different pixels is uncorrelated: 0=jiNN .  In the preceding expressions, a  is the expectation value of the random 

variable a . 
 Consider measurements of a time series of images of a uniform phantom.  Suppose that rf instability in the scanner causes the gain of each image to be 

different.  The value of pixel i in image k can be written as ( )ikki NSgS += 0, , where the gain kg  is a random variable with mean 1 and variance 2
gσ :  kkg α+=1 ,  

0=kα , 22
gk σα = , and 0=lkαα , α is a random variable that describes the gain instability, and the brackets  denote the expectation value of the time 

average.  We further assume that the distribution of the noise N is identical in all images and that there are no noise correlations between different images: 0, =kiN , 

0,, =liki NN , and ( ) ( ) ( ) ( )kikkik NgfNgf ,, αα = , where Ni,k is the noise in pixel i of image k, and f and g are arbitrary functions. 

 
 In our model, the value of pixel i in image k is ( )( ) =++= kikki NSS ,0, 1 α ( )kikkik NNSS ,,00 αα +++ .  Note that the deviation from the �true� value 

contains contributions from both the thermal noise N and the gain instability α.  We wish to compute the signal to noise ratio as a function of ROI size.  A square ROI 

with side length n contains n2 pixels.  The expectation value of the time average signal Sk(n) in such an ROI is ( ) ( ) 0
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the expectation value of the mean square signal in the ROI is ( )( ) ( )( )
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the fact that gNS σσ ,0 >> , and dropping terms of order σ4 , can be rewritten as ( )( ) 222
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The reciprocal of the signal-to-noise ratio is therefore 
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Equation  2 is equivalent to Equation 1 if SNR= NS σ/0  and λ=σg. 

Note that the validity of Equation 2 is not restricted to square ROIs; it is valid for any ROI of n2 points selected from a uniform region of a phantom. 
Results 
To test our hypothesis that the deviation of 1/TSNR vs n from the expected 1/n dependence is 
caused by gain instability, we defined two semi-circular masks, called the reference mask and the 
ROI mask, on a times series of echo-planar images of a silicon oil phantom.  We generated a 
Weiskoff plot by selecting pixels at random from the ROI mask.  We then estimated the gain for 
each image by computing the average of signal in the reference mask and renormalized the data 
by dividing the ROI data for each image by the estimated gain of the image.  The results are 
shown in Figure 1.  The corrected data much more closely approaches the ideal 1/n behavior than 
does the uncorrected data.  Residual deviation from 1/n behavior is probably caused by error in 
the gain estimates.  
Conclusion. 
We have shown that random fluctuations in gain result in Weisskoff EPI stability plots (1) having 
the functional form proposed by Bodurka (2).  We provide physical justification for the previous 
heuristic model and show that the stability plots approach the expected 1/n behavior if the data 
are corrected for gain instability. 
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