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INTRODUCTION 
Motion artifacts remain a significant problem in MRI.  Retrospective motion correction via post-hoc image registration has two major drawbacks:  1) the images must 
be re-sampled, which causes blurring; and 2) the procedure cannot correct for the motion that happens during the individual k-space acquisitions. Such intra-scan 
motion results in ghosting and ringing artifacts that generally cannot be corrected for by post-hoc procedures.  An alternative approach to motion correction is to correct 
the images during scanning in near real-time, a technique which is commonly referred to as “prospective motion correction”, exemplified by Siemens’ PACE method 
for EPI BOLD acquisitions (1). Here, we present a general framework for prospective motion correction which is capable of adjusting the slice prescription after every 
MRI readout (e.g. individual EPI slice). This technique, called PROspective Motion correction (PROMO), utilizes the entire history of parameter estimates along with a 
model of the object’s kinematics to recursively estimate the object’s position (in three dimensions) in real-time. The approach can be adapted for use with a wide range 
of imaging methods, including single- and multi-shot EPI, PROPELLER, 2-D and 3-D conventional spin echo, fast spin echo, and inversion prepared gradient echo 
sequences.  
THEORY 
Real-time motion detection in MRI can be formulated as a nonlinear sequential estimation problem.  This formulation allows the use of nonlinear predictive filters, such 
as the Extended Kalman Filter (EKF) (2) for online inference.  Nonlinear predictive filters consist of a process and measurement model.  For motion tracking in MRI, 

the process and measurement models can be described by [1] and [2], respectively.  [1] is a kinematic 
description of the object using its position ( p ), velocity ( p& ), and acceleration ( p&& ).  The exact form of [1] 

depends upon the kinematic assumptions and the sampling rate t∆ .  Here, we truncate [1] to first order 
(constant position model).  The position p  parameterizes a rigid-body affine transform ( )M p  which maps 

the current image y to a fixed reference ( )R x .  [2] is a nonlinear re-sampling function which interpolates 

( )R x  at the predicted position.  Recursive estimates of p  are obtained using the EKF filter update equations.  The filter bandwidth is controlled by adjusting the 

magnitude ratio of the process noise covariance ; (0, )N=Q w Q to measurement noise covariance ; (0, )N=R v R .  We refer to this ratio as the “smoothness factor” 

(SF). 
METHODS 
We used simulated and real MRI datasets to test the validity of the 
PROMO method for motion estimation.  In the first experiment, 
we simulated an EPI time-series by re-sampling a single axial 
gradient echo EPI volume (TR/TE: 2sec/19.7msec, image matrix: 
[64 64 16], voxel size (mm): [3.125 3.125 5]) collected on a 1.5 T 
Signa Twin Speed system (GE Healthcare Technologies, 
Milwaukee, WI) four times using linear interpolation.  In the 
middle of the third volume, 10 slices were translated along the 
positive x-axis (left/right) by 2mm.  White random noise (2% of 
signal magnitude) was then added to each voxel.  This procedure 
was then repeated for motion in the remaining five degrees of 
freedom resulting in six total time-series datasets (one translation 
and one rotation in each of the three cardinal axes of Euclidian 
space).  The rotation magnitude was 2 deg.  PROMO was used to 
estimate motion in each of the six time-series datasets using the 
first volume of each as the reference.  In a second experiment, a 

pineapple was scanned using a PROPELLER sequence (TR/TE: 6sec./108.3msec., num blades: 26, image matrix:[28 
28 25], voxel size (mm): [7.86 7.86 3]) collected on a GE 3.0T Signa EXCITE system.  During acquisition, the 
pineapple was translated 3mm along the B0 direction (z-axis) by programming periodic (6 sec.) shifts in the patient 
table.  Prior to running PROMO a control parameter was added to [1] to account for the individual blade rotations.  
The first blade in the series was used as the reference image for PROMO.  In both experiments, Matlab and C 
implementations of PROMO were run on a Dell Precision Desktop (Xeon Woodcrest 3Ghz processor, 4G RAM).   
RESULTS 
Results of the EPI simulations are shown in Figure 1.  Only translation along and rotation around the x-axis are 
shown (all other datasets show similar results).  PROMO estimates (solid lines) are shifted by one sample with 
respect to the true motion (dashed gray line) in order simulate online feedback delay.  The average time per estimate 
was 56.2 and 18.7 msec. for the Matlab and C implementations, respectively.  Results of the PROPELLER 
experiment are shown in Figure 2.  Here, only the PROMO estimates are shown.  In this experiment, the average time 
per estimate was 26.3 and 8.6 msec. for the Matlab and C implementations, respectively. 
DISSCUSION/CONCLUSIONS 
Our results demonstrate that the PROMO method provides accurate estimates of in-plane as well as through-plane 
motion during scans, with greatly reduced latency relative to existing methods.  Although the current results apply 

only to self-navigating EPI and PROPELLER acquisitions, we are in parallel working on applying the PROMO method to other sequences, including commonly used 
clinical 2-D and 3-D acquisitions, using separate navigators. If successful, this approach may largely eliminate artifacts associated with subject motion, thus reducing 
data loss, and extending the diagnostic use of MRI to a wider range of subject populations.    
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