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Introduction: Small variations in magnetic susceptibility and the physical/chemical environment can lead to variations in the static field strength and the  spin-spin 
decay rate within a sample. These variations, in turn, lead to image artifacts, which it may be desirable to remove. In this abstract we describe a method, using two 
acquisitions at different gradient strengths, for removing these artifacts and mapping the variations of the B0 -field and R2.  For simplicity of exposition we describe the 

method in the context of radial sampling. 
Theory: Let ρ(x) denote the proton density within a 2d-slice of a sample, ∆B(x)  the variation in the static field strength and ∆R2(x)  the variation in the spin-spin 

relaxation rate around the mean R2
 of R2 (x) , with respect to the density ρ(x)dx . Suppose that the slice is selectively excited and, at the conclusion of the rephrasing 

step, we apply a frequency encoding gradient, g cosθ ,sinθ( ) , to acquire samples of �ρ(k)  along a radial like in k-space.  If acquisition begins at t=0, then the signal at 

time t is given by: S(t) = e−R2t e−i x,k(t )
∫∫ e−t (iγ∆B(x )+∆R2 (x ))ρ(x)dx , where k(t) = γ gt(cosθ,sinθ) . We can express tγ = g−1 | k(t) |  and therefore: 

S(t ) = e− R2 t e− i x ,k (t )

∫∫ e− |k (t )|g−1 (i∆B( x )+γ −1∆R2 (x ))ρ(x)dx .  If we assume that ∆B  and ∆R2
 are small, or at least, that |k(t)| is small, then we can approximate the 

second exponential using ex ≈1+ x  to obtain that 

S(t) ≈ e−R2 t e− i x,k(t )

∫∫ [1− | k(t) | g−1(i∆B(x)+ γ −1∆R2 (x))]ρ(x)dx . Thus we see that 

S(t) ≈ e−R2t [ �ρ(k(t ))− g−1 | k(t) | �e(k(t))]  where  e(x) = (i∆B(x)+ γ −1∆R2 (x))ρ(x)  is the error introduced by variability of  B0  and T 2
. In the last formula 

we see that the error term depends linearly on g−1 . Hence, if we acquire samples of �ρ(k) , at the same points in k-space, with two different gradient strengths, then we 

can combine  weighted versions of the two measurements to obtain samples of  �ρ(k)  with the error term removed.  The calculations here assume a radial sampling 

scheme; similar considerations apply to other sampling schemes.  This technique can be used as the basis for a recursive algorithm to map the variations in R2 and B0. 
Methods:  (a)  Two gradient strengths and radial sampling: Suppose that we measure each ray in k-space  at two gradient strengths, g1 < g2

, the samples are 

at taken at angles {θk} , and frequencies {k j} . The sampling times are {t j
1 = j∆t1}  and {t j

2 = j∆t2} ; the measurements are given by 

mjk
1 = e−t j

1R2 [ �ρ(kjω(θk ))− g1
−1 | kj | �e(kjω (θk ))]  and mjk

2 = e−t j
2R2 [ �ρ(kjω(θk ))− g2

−1 | kj | �e(k jω(θk ))] , where ω(θ ) = (cosθ, sinθ ) . The 

combination: 

M jk = (g2 − g1)−1[e−R2 t j
1g2

−1 (g2 −g1 )g2mjk
2 − g1mjk

1 ] = e−t j
1R2 �ρ(kjω (θk ))  gives the measurements at gradient strength  g1 uncorrupted by variations in  either 

the static field strength  or the spin-spin relaxation time. Applying the inverse Fourier transform gives ρ.  The Fourier transform of the error term is obtained 

from the differences divided by the frequency: �ejk =| k j |−1 (M jk − mjk
1 ) = e− t j

1R2 g1
−1�e(k jω(θk )), j ≠ 0 ; at zero frequency we set �e0k = 0 . Applying the inverse 

Fourier transform to this data gives samples of ρ(x)[γ −1∆R2 (x) + i∆B(x)] . Dividing by ρ(x)  gives a map of γ −1∆R2 (x) + i∆B(x).   This procedure may 

used iteratively to get increasingly accurate estimates of the spin density and these variations. If  ∆R2 (x)  and ∆B(x)  are not that small, then this procedure 

could be applied using a cutoff at higher frequencies, to remove, and map  the low frequency variations in these quantities. 
(b) SNR effects:  The  SNR of the combined (independent) measurements is approximately half the SNR of the measurements at the higher gradient strength. By using 
different amounts of signal averaging the two sets of measurements can be normalized to have the same SNR. In this case the overall loss of SNR is a factor of 5 . 
Experimental results: The data is acquired with a 3D hybrid radial pulse sequence. In-plane resolution is 150x150 microns with a slice thickness of 1.5 mm. 
Acquisition time for 8 slices is 5 minutes. Data is acquired at two gradient strengths 3.5 and 7 mT/m. A custom built surface coil is used to scan an ex-vivo tibia bone 
specimen, with a T2  of about 40ms, in a 1.5T Siemens Sonata scanner.  At the lower bandwidth, the acquisition of a ray in k-space requires about 20ms.  The raw data 
are combined (without correcting for spin-spin decay) as 2*B-A, where A and B are the data sets acquired at the two  gradient strengths. The improvement in the 
sharpness of the image, across the field of view, is quite apparent in Fig. 3. 
Conclusion:  We demonstrate a simple method for removing artifacts in MR-images due to small spatial variations in magnetic susceptibility and spin-spin decay rates. 
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Fig. 1:  Low bandwidth Fig.  2:  High bandwidth Fig.  3:  Combined 
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