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Fig.1 The normalized error εT1=σT1√Τ as a function of 

imaging time T. Top: For T ‹ 0.1.T1 and representative 

T2
*=0.04.T1 and 0.07.T1 (solid and dashed lines). 

Bottom: For T › T1 , a regime where εT1 no longer 
depends on T2

*. Note that since the number of 
averages N1 and N2 are integer, εT1 attains oscillatory 
behavior as a function of T. Also note that repeating 
the imaging pair until all time is spent, as prescribed 
by Deoni et al. and Wang et al. , leads to constant εT1, 
marked by “+”s, “×”s and “○”s. 
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Fig. 2 Histogram of the distribution of experimental 
variability σT1 in T1 estimates using DESPOT1 
(dashed curve) and the proposed protocol (solid 
curve). Both experiments took equal time. Note that 
σT1’s produced by the proposed method cluster 
closer to zero than DESTPOT1’s, indicating that 
smaller errors, (higher precision) occur more often. 
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INTRODUCTION. The intrinsically low signal-to-noise-ratio (SNR) of MR images leads to a variability in the quantitative metric 
derived from them, limiting its usefulness. Many studies have been devoted to optimizing T1 measurement strategies (1,2,3). All, 
however, share several limitations: 1) the choice of acquisition parameters is restricted in one way or another; 2) the effects of the MR 
signal decay during the readout are ignored; 3) and most important, the restriction of total imaging time is disregarded. 
THEORY. In the spoiled gradient-recalled echo (SPGR) sequence, the image intensity, 

ρ, is related to effective transverse 
relaxation time T2

*, spin density, ρ
�0, 

flip angle, α,  echo time, TE, and 
repetition time, TR, by Eq.1. Given 
two images, ρ1, ρ2, obtained with 
different acquisition parameters, T1 
can be estimated from ρ1/ρ2 

numerically. If �σ0(Tadc) is the standard deviation of the random noise in an individual 
image, determined by a common sample, instrument, readout duration Tadc (Tadc≤2TE) 
σ0(Tadc)~1/√Tadc (5), field of view (FOV) and resolution then, using error propagation 
arguments (6), the variance σT1 in T1 (Eq.2) can be minimized subject to the total 
imaging time constraint T=N1TR,1+N2TR,2 where N1 and N2 are the number of averages of 
each experiment in the pair. For a given total experimental time T this minimization can 
be performed to yield the best acquisition protocol. (Optimality of protocols requires Tadc 
be as close to T2

* as possible.) Comparing the accuracy gain to the square-root of 
imaging time, the optimal protocol leads to errors which decline much faster (see Fig.1).  
Examples. For total imaging time of T=0.01T1, the optimal protocol is identical to that 
of DESPOT1 (2): TR,1=TR,2= 0.005T1, α1=3°, α2=13°, N1=N2=1. If more time is available 
T=0.05T1, according to (2) only the number of averages is changed N1=N2=5 which 
leads to √5 improvement in accuracy. For equal imaging time TR,1=0.025T1, 
TR,2=0.025T1, α1=5°, α2=30°, N1=N2=1 leads to 1.7√5–1.9√5 accuracy improvement. In 
other words, accuracy accrues faster than in proportion to the square-root of imaging 
time (Fig.1a). Even though the protocol was optimized for an assumed value of T1, it 
outperforms the referenced one between 0.01T1 and 10T1. Similar situation occurs with 
the protocol of Wang, et al (4) where TR,1= TR,2, N1=N2 restrictions were artificially 
imposed. Due to these restrictions, the T1-error is 25% larger than achievable in the same 
imaging time (see Fig.1b). In this case the T1-interval over which our protocol 
outperforms the reference is between 0.01T1 and 2.16T1 around the assumed T1 value. 
METHODS. The optimal protocol was verified experimentally on a 3T Siemens Trio 
whole-body imager (Siemens AG, Erlangen, Germany) using its transmit-receive body coil, on a uniform 15cm diameter, 40cm length 
cylindrical water phantom of T1 ≈ 300ms using a 3D SPGR with 192×192×48 mm3 FOV and 64×64×16 matrix. The acquisition 
parameters were according to DESPOT1 and as described here. Both experiments were done five times back-to-back using equal 
measurement time. Standard deviations of T1 were computed on a pixel-by-pixel basis and their distributions were produced. 
RESULTS. As predicted, when the new method is used, the standard deviations cluster closer to zero (see Fig.2). Based on the 
Kolmogorov-Smirnov test, the probability that the observed difference in distributions is accidental is less than 10-5 (7). 
CONCLUSION. It is shown that the total imaging time uniquely determines the best 
achievable precision and a protocol to obtain it. While the SNR of the average individual 
images does not improve beyond the square-root of their acquisition duration, the 
precision of T1 values derived from their combinations – does. 
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