Surpassing Square-Root of Imaging Time Accuracy Gain in T₁ Estimation using SPGR sequence.

L. Fleysher¹, R. Fleysher¹, S. Liu¹, W. Zaaraoui¹, and O. Gonen¹

¹Department of Radiology, NYU School of Medicine, New York, NY, United States

INTRODUCTION. The intrinsically low signal-to-noise-ratio (SNR) of MR images leads to a variability in the quantitative metric derived from them, limiting its usefulness. Many studies have been devoted to optimizing T_1 measurement strategies (1,2,3). All, however, share several limitations: 1) the choice of acquisition parameters is restricted in one way or another; 2) the effects of the MR signal decay during the readout are ignored; 3) and most important, the restriction of total imaging time is disregarded. **THEORY.** In the spoiled gradient-recalled echo (SPGR) sequence, the image intensity,

$$\rho = \rho_0 \frac{1 - e^{-T_R/T_1}}{1 - e^{-T_R/T_1} \cos(\alpha)} \sin(\alpha) e^{-T_E/T_2^*}$$

$$\sigma_{T_1}^2 = \sigma_0^2 \left(T_{adc}\right) \left[\frac{1}{N_1} \left(\frac{\partial T_1}{\partial \rho_1} \right)^2 + \frac{1}{N_2} \left(\frac{\partial T_1}{\partial \rho_2} \right)^2 \right]$$
[1]

 ρ , is related to effective transverse relaxation time T_2^* , spin density, ρ_0 , flip angle, α , echo time, T_E , and repetition time, T_R , by Eq.1. Given two images, ρ_1 , ρ_2 , obtained with different acquisition parameters, T_1 can be estimated from ρ_1/ρ_2

numerically. If $\sigma_d(T_{adc})$ is the standard deviation of the random noise in an individual image, determined by a common sample, instrument, readout duration T_{adc} ($T_{adc} \leq 2T_E$) $\sigma_0(T_{adc}) \sim 1/\sqrt{T_{adc}}$ (5), field of view (FOV) and resolution then, using error propagation arguments (6), the variance σ_{TI} in T_I (Eq.2) can be minimized subject to the total imaging time constraint $T=N_1T_{R,1}+N_2T_{R,2}$ where N_1 and N_2 are the number of averages of each experiment in the pair. For a given total experimental time T this minimization can be performed to yield the best acquisition protocol. (Optimality of protocols requires T_{adc} be as close to T_2^* as possible.) Comparing the accuracy gain to the square-root of imaging time, the optimal protocol leads to errors which decline much faster (see Fig.1). **Examples.** For total imaging time of $T=0.01T_i$, the optimal protocol is identical to that of DESPOT1 (2): $T_{R,I}=T_{R,2}=0.005T_I$, $\alpha_1=3^\circ$, $\alpha_2=13^\circ$, $N_I=N_2=1$. If more time is available T=0.05T₁, according to (2) only the number of averages is changed $N_1 = N_2 = 5$ which leads to $\sqrt{5}$ improvement in accuracy. For equal imaging time $T_{R,l}=0.025T_l$, $T_{R,2}=0.025T_1$, $\alpha_1=5^\circ$, $\alpha_2=30^\circ$, $N_1=N_2=1$ leads to $1.7\sqrt{5}-1.9\sqrt{5}$ accuracy improvement. In other words, accuracy accrues faster than in proportion to the square-root of imaging time (Fig.1a). Even though the protocol was optimized for an assumed value of T_1 , it outperforms the referenced one between $0.01T_1$ and $10T_1$. Similar situation occurs with the protocol of Wang, et al (4) where $T_{R,I} = T_{R,2}$, $N_I = N_2$ restrictions were artificially imposed. Due to these restrictions, the T_1 -error is 25% larger than achievable in the same imaging time (see Fig.1b). In this case the T_{l} -interval over which our protocol outperforms the reference is between $0.01T_1$ and $2.16T_1$ around the assumed T_1 value. METHODS. The optimal protocol was verified experimentally on a 3T Siemens Trio

whole-body imager (Siemens AG, Erlangen, Germany) using its transmit-receive body coil, on a uniform 15cm diameter, 40cm length cylindrical water phantom of $T_1 \approx 300$ ms using a 3D SPGR with 192×192×48 mm³ FOV and 64×64×16 matrix. The acquisition parameters were according to DESPOT1 and as described here. Both experiments were done five times back-to-back using equal measurement time. Standard deviations of T_1 were computed on a pixel-by-pixel basis and their distributions were produced. **RESULTS.** As predicted, when the new method is used, the standard deviations cluster closer to zero (see Fig.2). Based on the

Kolmogorov-Smirnov test, the probability that the observed difference in distributions is accidental is less than 10^{-5} (7). **CONCLUSION.** It is shown that the total imaging time uniquely determines the best

achievable precision and a protocol to obtain it. While the SNR of the average individual images *does not* improve beyond the square-root of their acquisition duration, the precision of T_1 values derived from their combinations – does.

References.

[1] Kurland RJ. Strategies and tactics in NMR imaging relaxation time measurements. I. Minimizing relaxation time errors due to image noise--the ideal case. Magn Reson Med 1985;2(2):136-158. [2] Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49(3):515-526. [3] Weiss GH, Gupta RK, Ferretti JA, Becker ED. The choice of optimal parameters for measurement of spin-lattice relaxation times. I. mathematical formulation. J Magn Reson 1980;37:369-379. [4] Wang HZ, Riederer SJ, Lee JN. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1987;5(5):399-416. [5] Macovski A. Noise in MRI. Magn Reson Med 1996;36(3):494-497. [6] Bevington P. Data Reduction and Error Analysis for the Physical Sciences (Chapter 6). New York: McGraw-Hill; 1969. [7] Stephens M. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics Without Extensive Tables. J Royal Statistical Society, Ser B 1970;32(1):115-122.

Fig.1 The normalized error $\varepsilon_{TI} = \sigma_{TI} \sqrt{T}$ as a function of imaging time T. <u>Top</u>: For $T < 0.1 \cdot T_1$ and representative $T_2^* = 0.04 \cdot T_1$ and $0.07 \cdot T_1$ (solid and dashed lines). <u>Bottom</u>: For $T > T_1$, a regime where ε_{TI} no longer depends on T_2^* . Note that since the number of averages N_1 and N_2 are integer, ε_{TI} attains oscillatory behavior as a function of T. Also note that repeating the imaging pair until all time is spent, as prescribed by Deoni et al. and Wang et al., leads to constant ε_{TI} , marked by "+"s, "×"s and "0"s.

Fig. 2 Histogram of the distribution of experimental variability σ_{T1} in T_1 estimates using DESPOTI (dashed curve) and the proposed protocol (solid curve). Both experiments took equal time. Note that σ_{T1} 's produced by the proposed method cluster closer to zero than DESTPOTI's, indicating that smaller errors, (higher precision) occur more often.