## Rapid Dynamic 3D T1-Mapping of the Abdomen

## D. Wang<sup>1</sup>, S. Virmani<sup>2</sup>, I. Koktzoglou<sup>1</sup>, M. Mulcahy<sup>3,4</sup>, R. Omary<sup>1,4</sup>, and A. Larson<sup>1,4</sup>

<sup>1</sup>Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, IL, United States, <sup>2</sup>Department of Radiology, Northwestern University, Chicago, IL, United States, <sup>4</sup>Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States

**Introduction:** Rapid accurate  $T_1$  mapping with large volume coverage is particularly important for abdominal studies of  $T_1$ -shortening contrast agent kinetics. The variable flip-angle (VFA) spoiled-GRE method permits rapid  $T_1$  quantification with accuracy similar to that of conventional IR techniques [1, 2]. Provided baseline  $T_1$  information, a dynamic GRE scan can be used for serial  $T_1$  measurements [3]. However,  $B_1^+$  inhomogeneities lead to VFA  $T_1$  measurement errors and both propagate into serial  $T_1$  errors during dynamic measurements. RF profile calibration or *in vivo*  $B_1^+$  mapping can improve the accuracy and precision of VFA measurements [1, 2, 5]. We describe a method for dynamic 3D  $T_1$ -mapping across a wide  $T_1$  range (150-2000 ms) for abdominal measurements and demonstrate the accuracy and stability of our method in phantom and animal model studies.

Methods: All experiments were performed using a 1.5T clinical MRI scanner (Siemens Magnetom Sonata) with a single channel coil. Nominal flip angle (FA) slice profiles were generated by numerically solving Bloch equations based upon pulse sequence RF definitions (Fig. 1). 3D slice over-sampling was applied to avoid RF side lobe wrapping. Angle Baseline and dynamic T<sub>1</sub> mapping was performed using 3D VFA and 3D single FA GRE 0 acquisitions respectively. Based upon our slice profile calibrations, turbo spin echo (TSE) sequences with double FA measurements were used to provide in vivo FA maps [6] which were used to correct both baseline and dynamic  $T_1$  measurements. These calibration steps were performed using nonlinear curve fitting of the integral signal equations over each slice. Imaging Parameters Identical for phantom and animal studies. **GRE**: 3D, TR/TE = 6/1.66ms, 850Hz/pixel BW, 8 slices/slab, 50% slice over-sampling; for baseline  $T_1$ : FA = 2°, 9°,  $19^{\circ}$  [1], 4 averages; for dynamic scan: FA =  $9^{\circ}$ , 1 average, **1.6s/slab imaging rate**. **TSE:** 3D, TR/TE = 4000/10 ms, 186 Hz/pixel BW, FA =  $120^\circ$ ,  $60^\circ$  excitation,  $120^\circ$  refocusing, 2 refocusing pulses, 2 slices/slab, 100% slice over sampling, 2 slabs/scan, 100% spacing, 2 scans interleaved for each excitation FA. GRE and TSE: 5mm slice-thickness, 220×124 mm<sup>2</sup> FOV, 128×80 matrix,  $1.72 \times 1.72 \times 5.0$  mm<sup>3</sup>, slab-selective RF pulse. IR TSE was used to measure reference T<sub>1</sub> values. *Phantom Studies* To evaluate the accuracy of our T<sub>1</sub>-mapping methods we initially performed phantom studies using 8 vials containing Gd solutions (T<sub>1</sub> ranging from 75 to 2000 ms) and a Siemens cylindrical phantom with  $1.25g \operatorname{NiSO}_4 \cdot 6H_2O + 5g \operatorname{NaCl/1kg} H_2O$ .

<u>Animal Studies</u> 6 liver tumors were grown in 4 New Zealand White rabbits. Following abdominal FA mapping and VFA measurements, dynamic  $T_1$  mapping was performed after intra-arterial injection of 3.0mL 2.5% Gd-DTPA. 8 Gd vials were placed next to each rabbit for calibration purposes and to serve as references during dynamic measurements.

Results: Phantom Studies After slice profile and FA calibration, VFA  $T_1$  measurements were highly correlated to reference  $T_1$  values but the measured T<sub>1</sub> values deviated between slices suggesting systematic errors introduced at these different positions. To correct these errors, we performed linear regression between multiple VFA and reference T<sub>1</sub> data points and then back projected alternate VFA T<sub>1</sub> values at the same slice onto the regression curve to interpolate their correct  $T_1$ values. This correction method was validated in the Siemens cylindrical phantom. Corrected VFA T1 values in the phantom at 4 slices (Fig. 2) were 291.8±8.3, 294.9±6.6, 293.0±5.8, 289.6±6.0 ms, all in close agreement with reference IR measurement of 293.2±1.1 ms. <u>Animal Studies</u> A representative baseline  $T_1$  map and pre and post-contrast dynamic contrast-enhanced T<sub>1</sub> maps are shown in Fig. 3. The 8 vials positioned around the rabbit provided accurate calibration regression curves in all studies, all with r > 0.9985. In 4 rabbits, the average baseline VX2 liver tumor core  $T_1$  was 1367 ± 153 ms while tumor edge T<sub>1</sub> was  $857 \pm 102$  ms. After Gd injection, T<sub>1</sub> in arterially perfused tumor regions decreased to a minimum of ~250 ms. The dynamic stability of the T<sub>1</sub> measurement across a 150-2000 ms T<sub>1</sub> range over 100s at a 1.6s temporal resolution is shown in Fig. 4. Without systematic error calibration,  $T_1$  error was > 10%. With systematic error correction, after spin system equilibrium, the maximum mean T<sub>1</sub> error was <3.6%, and the maximum mean standard deviation was <3.7%. **Conclusion:** We present a rapid 3D GRE T<sub>1</sub>-mapping technique







IR TSE T1 (ms) **Fig. 2.** Regression plot demonstrates strong linear relationships between VFA measurements and reference  $T_1$  values in different slices but also suggests slice dependent systematic errors.



**Fig. 3.**  $T_1$  maps at different time points during dynamic scan after contrast injection. VX2 liver tumor had higher baseline  $T_1$  value than surrounding tissue. After contrast injection,  $T_1$  at the tumor edge decreased suggesting characteristic peripheral rim contrast uptake but  $T_1$  within tumor core changed much less suggesting necrosis.



**Fig. 4.** Dynamic stability of the  $T_1$  measurement across 150-2000 ms  $T_1$  range over 100s at 1.6s temporal resolution. (left) error (%) without systematic error correction: (center) error (%) with systematic error correction (right) Precision: standard deviation (%)

demonstrating high stability, accuracy and precision for 3D baseline and dynamic  $T_1$  measurements. With navigator triggering for FA mapping and breath-holding for  $T_1$  measurements, this technique is readily applicable for abdominal imaging in humans particularly because the volume coverage provided by our multi-slab FA mapping strategy can be scaled with only minimal acquisition time penalties. With rigorous calibration of slice profiles,  $B_1^+$  nonuniformity, and slice dependent systematic errors, we can achieve accurate dynamic 3D  $T_1$ -mapping with large volume coverage for adnominal imaging applications.

**References:** [1] Cheng MRM 2006 55:566-574 [2] Wang JMR 2006 182:283-292 [3] Zheng JMRI 1999 10:576-581 [4] Cernicanu AcadRad 2006 13:686–693 [5] Parker MRM 2001 45:838–845 [6] Wang MRM 2005 53:408-417