
 
Fig.1: Exponential fits obtained with the simulated data. 

 Probe 1 Probe 2 Probe 3 Probe 4 

Ref. 7.44 11.78 141.59 44.31 

SENSE R=4 – LS 9.17 14.36 155.68 45.50 

SENSE R=4 – ML 7.58 12.10 153.00 45.21 

Tab. 1: Mean T2* values for each probe. 
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Fig. 2: Map of the SNR corresponding to the four-fold 

accelerated SENSE reconstruction. 
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Introduction: Relaxation time constants such as T2* allow to quantitatively analyze tissues and to measure in-vivo contrast agent concentrations. They can be computed on 
the basis of a multi-echo measurement by fitting an exponential function of the type s0exp(-t/T2*) to the magnitude data. However, least-squares algorithms, which have been 
proposed to perform the fit [1, 2], tend to overestimate the true relaxation time, because they do not take into account the non-Gaussian noise statistics of magnitude data [3]. 
As a consequence, an SNR-dependent bias is spuriously introduced, which may hamper the comparison of relaxation time constants between voxels having different noise 
levels. In this work, the case of T2* mapping in combination with SENSE, which is characterized by spatially varying SNR, is investigated. A maximum likelihood algorithm 
is applied to obtain non-biased estimates of the relaxation time. 
 
Theory: The proposed fitting algorithm applies a maximum likelihood approach to compute the optimal 
relaxation parameters (s0, T2*) given a time series of N signal samples sk measured at echo times TEk. Since 
magnitude data follow a non-central chi distribution, the likelihood function of (s0, T2*) can be expressed as 
[3]: 
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I0 is the modified Bessel function of the first kind, of degree 0, and σ is the voxel-dependent noise standard 
deviation. The parameters (s0, T2*) are found by maximizing the likelihood function L. Powell’s method [4] 
can be applied to solve this non-linear optimization problem. 
In SENSE, the noise level in the reconstructed images depends on the sensitivity profile C and increases with 
the acceleration factor R. Minimal noise propagation is achieved when the SENSE reconstruction is based on 
the noise covariance matrix Ψ of the input data. After reconstruction, the standard deviation for an unfolded 
voxel is then given by [5]:  

( ) 11 −−Ψ= CCR Hσ .      (2) 

 
Methods: Simulations with different values of T2* and of the SNR were performed to evaluate the proposed 
fitting algorithm. Then, a phantom consisting of 4 probes filled with different concentrations of a super-
paramagnetic iron oxide (SPIO, Resovist® Schering AG) was imaged with a custom-made 6 element head-
coil array on a 1.5T scanner (Achieva, Philips Medical Systems). A reference T2* scan with a high SNR and 
no acceleration (R=1) was made; then, a four-fold accelerated scan was performed (R=4). Both experiments 
consisted of 32 echoes with an echo spacing equal to 2 ms. The following parameters were used: resolution 
1.0×1.0×5.0mm, TR=120ms, flip angle=30o. All images were reconstructed with the SENSE algorithm. The 
noise covariance matrix Ψ was assessed on the basis of calibration noise data. The standard deviation maps 
of the reconstructed images were computed according to Eq. 2. T2* maps were calculated for each dataset, 
with both a least-squares (LS) algorithm and the proposed maximum likelihood (ML) algorithm.  
 
Results: Fig. 1 shows an example of exponential fits obtained with the simulated data for values of the SNR 
and the relaxation time similar to those encountered in the phantom experiment. When the SNR is low, the fit 
obtained with the least squares algorithm is significantly perturbed by the noisy samples located at the tail of 
the curve. This effect is avoided with the maximum likelihood algorithm.  
Fig. 2 shows the SNR map corresponding to the four-fold SENSE reconstruction: it has a highly spatially 
varying pattern. The combination of low SNR and short T2* values for the probes 1 and 2 results in a 
significant bias in the least-squares estimation of T2* (Tab. 1). The relative error equals 23.3% for probe 1 
and 21.9% for probe 2. This bias is largely reduced when applying the maximum likelihood algorithm, with 
relative errors equal to 1.8% and 2.7%, respectively. For higher values of T2*, as found in probes 3 and 4, 
the two algorithms yield similar estimates, as expected, with the maximum likelihood algorithm achieving a 
slightly smaller relative error. 
 
Discussion and conclusion: The proposed algorithm significantly reduces the systematic fitting error due to non-Gaussian noise statistics, especially for low SNR and for 
species with short T2*. The estimation of the relaxation time becomes more robust to noise and less sensitive to the number of echoes used. Averages computed over a region 
of interest are not biased, which enables the comparison of relaxation time values even in the presence of spatially or temporally varying SNR. This issue is especially 
relevant for fast scanning techniques like SENSE that suffer from strong local noise amplification for high acceleration factors. Applications requiring short scan times, e.g. 
to avoid long breathholds like T2* relaxometry of the liver, may benefit from this computation method.  The method applies also to T2 and T1 mapping. 
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