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Introduction: 
 Magnetic resonance current density imaging (MR-CDI) and magnetic resonance electrical impedance tomography (MR-EIT) are dual problems in that the 
solution of one makes the solution of the other trivial. In this study the MR-CDI problem is tackled using an iterative Fourier Transform (FT) method. The magnetic 
field generated by the internal currents of a conducting object has three components but only its z-component, Hz, is measured in the object by an MR scanner if subject 
rotations are to be avoided. MR-CDI and MR-EIT are inherently 3D problems when applied to human imaging. However 2D applications may also be of interest for 
sample analysis where preparation of a slice object is possible. In this study 2D simulation results for the proposed algorithm for MR-CDI are presented. 
 
The algorithm: 

Let Ω be a connected and bounded domain in the xy-plane, representing a biological tissue with positive non-zero nonuniform conductivity σ. We assume 
that current is either injected into Ω by surface electrodes or induced in it by an external AC magnetic field. The magnetic field due to the internal current density J = (Jx 
Jy) has only Hz component in Ω, which is related to Jx and Jy by the Biot�Savart integral. It has been shown that  the F{Jx}= (2jky/k)F{Hz} and F{Jy}= (-2jkx/k) F{Hz} 

where F is the Fourier Transform operator, kx, ky are are spatial frequencies in cycles/length in x and y directions 
respectively, and k = √(kx

2 + ky
2 ). These filters are null at the origin and their derivation assumes divergence free current in 

Ω.   
Although Jx and Jy are confined to Ω, Hz is not and therefore in order to find its FT it must be measured in a 

sufficiently large region Ω2 covering Ω. However practically, using MRI, one can measure Hz only in the tissue domain Ω. 
In this study we have developed an iterative method whereby the problem is solved by using Hz measurements in Ω only. 
The algorithm is as follows: 1) Hz is assumed to be zero in Ω2\Ω, and is assigned the measured values in Ω . 2) FT of Hz is 
is calculated in Ω2, and using the above inverse filters, Jx and Jy are calculated in Ω2. 3) The calculated currents are then 
multiplied by a support function which is 1 in  Ω  but 0 in Ω2\Ω. From this corrected (modified) current density, Hz is 
calculated back in Ω2. 4) The values calculated for Hz in Ω2\Ω are retained, but the values calculated in Ω  are replaced by 
the measured Hz values and step 2 jumped at. The algorithm has a good convergence behavior, and it finds the unmeasured 
values of Hz in  Ω2\Ω as well as calculating the current density in Ω.  In fact  by way of the determination of Hz in Ω2\Ω in 
addition to its measurement in Ω , the reconstructed current density is forced to lie in Ω only.  

 
Simulation results: 

Figure 1 shows the conductive object defined in  Ω ={-0.5 ≤ x ≤ 0.5, -0.5 ≤ y ≤ 0.5}, and the assumed σ distribution. The Finite Element Method is used to 
solve for the current density J in Ω  for when current is injected from the x = -0.5 edge and removed from the x = 0.5 edge. Current is also calculated for the case of 
uniform conductivity distribution in the object. This current, called Juni, is independent of the uniform conductivity value used. The difference current, Jd = J � Juni is 
divergence free and is used as our source current for simulation purposes. The magnetic field generated by this difference current is then calculated in Ω to be used as 
the measured magnetic field. Reconstructions are made for Ω2 ={-0.7 ≤ x ≤ 0.7, -0.7 ≤ y ≤ 0.7}. The reconstructed current density is shown in Figure 2, and the 
reconstructed magnetic field is shown in Figure 3.  It is observed that Hz has nonzero values in Ω2\Ω, and however reconstructed current is almost null in Ω2\Ω . Results 

shown in Figures 2 and 3 are for the 6th iteration at which the current density is 
within the correct distribution with less than 5% relative norm error. 

  
Conclusions: 

The proposed FT based algorithm for 2D MR-CDI appears to have 
good convergence behavior and it is also fast due to the fast implementation of 
the FT. Performance of the algorithm against noise is expected to be good in 

view of the fact that rejection of high frequency noise in Hz can be easily done in the Fourier domain. Note that the proposed algorithm is also applicable to induced 
current MR-EIT systems because induced currents are by nature divergence free. 
 

 

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

Figure 3. Reconstructed Magnetic Field

-0.5
0

0.5

-0.5
0

0.5
0

0.5

1

x

Figure 1. Conductivity
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Figure 2. Reconstructed Current Density
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