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Introduction: For Cartesian acquisitions, a single 2D GRAPPA kernel is typically used to synthesize the missing data in an accelerated scan. For undersampled non-
Cartesian trajectories like e.g. radial, spiral or PROPELLER, the local neighborhood varies over k-space. This requires the calculation of a new 2D GRAPPA kernel for 
some (or even every) undersampled k-space location. The latter is the essence of the PARS technique (1). This multitude of estimations is very time consuming in the 
general case. For undersampled propeller trajectories (such as PROPELLER (2), Turbo-PROP (3) and SAP-EPI (4)), the GRAPPA estimation becomes simpler since 
the undersampled trajectory is Cartesian and equidistant within each blade. Across blades, the GRAPPA kernel has the same spacing between the acquired and missing 
points, but a unique GRAPPA kernel must be calculated for each blade due to the orientation dependence relative to the RF coil. Given some N fully sampled 
calibration blades, two concerns may be raised for GRAPPA combined with propeller trajectories. First, the amount of data in a (low resolution) calibration blade is 
typically less than for conventional Cartesian GRAPPA acquisitions (e.g. FSE). This may render the problem underdetermined for large GRAPPA kernel sizes and 
many-(?)coil arrays. Second, given the slow and continuous variation of the coil sensitivities, it is unlikely that the 2D GRAPPA kernel would differ much from one 
blade to another. For these reasons, we have in this work investigated the use of a continuous 2D GRAPPA kernel tailored for propeller trajectories. 

Materials & Methods: Building on the ideas from our earlier work on spatial modeling of 1D GRAPPA kernels in hybrid space (5), we have now used a similar 
continuous representation of the GRAPPA weights using a 2D GRAPPA kernel in k-space with the continuous representation being the angle of the blades. The weight 
estimation for blade 1, in which the relation between ACS line i for coil j, yij, and the surrounding acquired lines (all coils), contained in a matrix A, is given 
by ,1 1 ,1=ij ijy A w , where wij,1 is an (Ncoils×Nky×Nkx)×1 vector representation of the GRAPPA kernel, and Nky and Nkx are the number of rows and columns involved in the 

GRAPPA kernel. In our setting wij is of size (8×2×3)×1. We can now estimate 
the GRAPPA weights for all N blades at once by: 
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where W is a matrix of size (Ncoils×Nky×Nkx)×N and the �vec� operator unravels 
the matrix W into a single column. To reduce the total number of independent 
unknowns in W and to make the GRAPPA kernel a continuous function over 
the blade angles, W is constrained by a cosine basis set C of size N×Norder 

across the columns of W: ( )= T
W CH . Given the basis set C, W (and hence 

the GRAPPA coefficients for all blades) is solely determined by the unknown 
elements of H, which is arbitrarily smaller than W. The elements of H are estimated from the k-space 
data Abig and ybig via 
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where �+� denotes the pseudo inverse and � ⊗ � the Kronecker product and we have used the following 

algebraic rule: ( ) ( ) ( )vec vec= ⊗TXY Y I X . Interestingly, the number of rows of C may be different when 

estimating and applying h. This allows e.g. the use of a sub-set of the final blades for the calibration. 
Exactly how many blades required for the estimation of h depends on the 2D GRAPPA kernel size, 
number of coils used and the richness of the basis set. To evaluate this method, we acquired propeller data on a gel phantom using an 8-channel head coil on a GE 1.5T 
system. A SAP-EPI pulse sequence used with 100 blades of resolution 32×256 swept over 0-180°, with R=2 along the long-axis of the blade. Two reconstruction 
experiments were performed. First, we investigated how many basis functions are needed to properly model the angular change of the GRAPPA kernel over the 
acquired blades for our coil configuration. For this experiment, every fifth blade was used to mimic a clinical scan situation better using 20 blades. Second, we explored 
how many blades are needed for a proper estimation of h and how well the continuous GRAPPA kernel performs when applied to all 100 blades in the application 
phase. 

Results: Figure 1 shows reconstructions of 20 equidistant blades with R=2 using various GRAPPA kernels. Fig. 1a corresponds to independent GRAPPA kernels 
derived on a blade per blade basis. In contrast, Fig. 1b shows the effect of reusing the GRAPPA kernel obtained from blade 1 on all 20 blades, which results in 
significant artifacts. In Fig. 1c, a single GRAPPA kernel has been derived from all blades using Eq. 2 in which case C is a single column containing N ones. This trades 
the aliasing seen in Fig. 1b for additional noise - again demonstrating that the GRAPPA kernel must be varied over angles. However, with only a few basis functions, 
the situation is much improved. In Fig 1d-f, two, four and eight cosine basis functions have been used for C in Eq. 2. Comparing Fig. 1a and 1e, we have reduced the 
number of GRAPPA coefficients to be determined by a factor of 5 without noticeable artifacts. With more blades, the reduction of unknowns will be even more 
pronounced. In Figure 2, all 100 blades have been involved in the reconstruction using an 8th order continuous GRAPPA kernel derived from all (left), every third 
(middle) and every ninth (right) blade. Using only every 9th blade (11%) for the estimation of h produces still proper reconstructions, although slight ringing may be 
appreciated in the central region of the phantom. 

Discussion & Conclusion: In this study we have demonstrated a way to estimate a continuous representation of the 2D GRAPPA kernel over angles in k-space. For 
GRAPPA propeller trajectories used in PROPELLER, Turbo-PROP and SAP-EPI this method makes better use of the blade calibration data and provides a flexible 
trade-off between computational speed and how fast the GRAPPA weight functions are allowed to vary angularly. Moreover, it is possible to estimate the continuous 
2D GRAPPA kernel from a subset of the blades and apply the GRAPPA kernel for all blades during a GRAPPA accelerated acquisition. This reduces the number of 
fully sampled blades needed for the GRAPPA calibration. Extensions of this method may be useful for other non-Cartesian trajectories, like radial sampling, provided 
the local distances in addition to the angle are taken into account. Indeed, modeling of the angular variation of the GRAPPA weights may have important implications 
for reconstructions like PARS.  Several local angle neighborhood weights, such as used in PARS, may determine a continuous set of GRAPPA weights that may the 
quickly calculated and applied per radial line, improving PARS reconstructions. 
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Figure 1. Different GRAPPA kernels used to synthesize missing lines in 20 propeller blades, 
each undersampled by R=2. See above and text for details. A 4th to 8th order cosine set can 
accurately model the variations in GRAPPA coefficients over a 180° sweep 

Figure 2. Reconstructions of 100 propeller blades undersampled 
by a factor of R=2. An 8th order continuous 2D GRAPPA kernel 
has been derived from all blades (left), every third blade (middle), 
every 9th blade (right) 
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