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Introduction   
In PROPELLER MRI [1], the partial overlap of the blades results in a non-uniform sampling density, which has to be compensated by appropriate 
weighting of the data. In general, the calculation of sampling weights is based on elaborated fast convolution algorithms [2,3], which are 
computationally efficient, but quite complex to implement.  
In the present study, an alternative approach is presented, which takes benefit of the regular-grid properties of the blades to analytically derive the 
sampling density function as defined by Jackson et al. [3].  

Methods  
Theory: The sampling density function Ρ (k) as introduced in [3] is 
defined as the k-space convolution of the sampling function S(k) and 
the employed interpolation kernel C(k), which corresponds to a 
multiplication in image space (Eq. 1).  The sampling function of a 
single blade represents a regular, finite grid, whose Fourier transform 
sblade(x,y) may be written analytically as an grating lobe function (Eq. 2), 
and hence, the overall sampling function s(x,y) may be obtained by 
superposition (Eq. 3). Here, Nx, Ny, B and φ  denote the number of 
samples per line, the number of lines per blade, the number of blades and the blade rotation angle, respectively. Therefore, s(r) can simply be 
calculated for arbitrary image locations, and subsequently, ρ (r) may be obtained by multiplication with c(r), the Fourier transform of the 
interpolation kernel (cf. Eq. 1). Finally, Ρ (k) of a particular, rotated blade may be derived by discrete Fourier transform of ρ (r), sampled at the 
accordingly rotated image grid.  
Implementation: The proposed approach has been implemented in C using a processor-optimized FFT-library [4]. For numerical efficiency, the 
grating lobe and kernel functions were pre-calculated and stored as function tables. Ρ (k) was calculated on a Nx×Nx k-space grid coinciding with one 
of the blade grids. For a PROPELLER trajectory with B-fold symmetry, Ρ (k) is identical for all blades, which results in a computational complexity 
of O(N ⋅ B), where N= Nx² denotes the number of image pixels. 
Simulations: PROPELLER k-space datasets were synthesized analytically using the Shepp-Logan phantom [5]. For image reconstruction, the data 
were weighted according to the proposed approach and rotated to a common Cartesian grid by discrete sinc-interpolation [6]. Additional 
reconstructions with all data set to �1� were performed to obtain the principal transfer function S(k)/ Ρ (k). For comparison, also Cartesian data sets 
with same resolution were synthesized and conventionally reconstructed. 
Results and Discussion  
On a 2GHz Pentium machine, the processing time for sampling density correction was about 70 ms for a symmetric trajectory with Nx =255, Ny= 21 
and B=19. The principal transfer function showed only minor modulations at the intersections of the blades, and the mean relative deviation was less 
than 2%. The image quality of the PROPELLER reconstruction was comparable to those of the Cartesian reference image. Selected results are shown 
in Fig.2. In general, PROPELLER trajectories may be asymmetric as a result of e.g. rotating-motion correction. In this case, Ρ (k) could be 
recalculated for every blade, leading to a complexity of O(N ⋅ B²), which, however, becomes unfavorable for large blade numbers. Alternatively, 
Ρ (k) could be successively rotated to the respective blade coordinate systems by direct sinc-interpolation [6], which would preserve the complexity 
O(N ⋅ B) of the symmetric case. 
In conclusion, the proposed approach represents a simple, fast and powerful alternative to gridding-based convolution techniques for PROPELLER 
sampling density correction. The 
approach will suffer from 
increasing computation time only 
in case of an extremely large 
number of blades. 
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Figure 1: Image quality. The PROPELLER principal transfer function (left) and reconstructed images of the 
Shepp-Logan phantom  (middle: PROPELLER, right: Cartesian) are shown. Additionally, 1D profiles of 
selected rows (blue lines) are shown as red lines. Using the proposed sampling density compensation very 
good image quality could be achieved.  
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