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Introduction   
Non-Cartesian data collection for PROPELLER MRI [1] requires advanced image reconstruction techniques such as fast gridding algorithms [2]. On 
the other hand, PROPELLER data are sampled on rotated Cartesian grids, which might open the way for much simpler reconstruction approaches. 
For instance, it is well known that Cartesian data may be rotated efficiently using the discrete sinc-interpolation [3,4]. In the present study, the 
applicability and performance of this approach was investigated for PROPELLER image reconstruction. 
 
Methods  
Theory: Rotation of Cartesian data by sinc-interpolation may be performed with a 2D chirp-z transform [3] or by shear operations [4]. Both 
approaches are comparable and show a similar computational complexity. The general scheme of the latter approach, which was employed in the 
present study, is depicted in Fig.1. An in-plane rotation may be decomposed into three successive shear operations about the X-, Y- and X-axis, 
respectively. Each shear operation results in a non-integer translation of each row or column, respectively. Such a translation can be performed 
precisely in the Fourier domain by applying appropriate linear phase shifts. Therefore, the rotation of a square Nx×Nx image requires 6Nx discrete 
Fourier transforms of size Nx and 3Nx×Nx additional phase multiplications, which results in an overall complexity of O(N), where N denotes the 
number of pixels. 
Implementation: The rotation algorithm has been 
implemented in C using a processor-optimized FFT-library 
[5] and was used for PROPELLER image reconstruction.  
After sampling density correction [6], all blades were 
rotated to a common k-space grid and added to allow a 
Cartesian image reconstruction. This resulted in an overall 
computational complexity of O(N ⋅ B), where B denotes the 
number of blades. 
Experiments and Simulations: High-resolution 
PROPELLER phantom data sets where acquired on a 
clinical scanner (Philips Achieva, 1.5 T) using TSE-and 
TFE-sequences (512 samples × 30 profiles × 25 blades,  
(256mm)² FOV). Additional datasets of same size were 
synthesized analytically using the Shepp-Logan phantom 
[7]. The data were reconstructed offline onto a 512² image 
matrix, using a 2GHz Pentium computer. For the 
experimental data, a phase correction as described in [1] 
was performed to account for potential shifts in k-space as a 
result of gradient imperfections. 
 

Results and Discussion  
The reconstruction time was 2s for the 512² images. The images from both measured and simulated data showed very good image quality without 
significant reconstruction artifacts. A potential, but in practice less relevant drawback of the proposed approach is that the computation time increases 
linearly with the number of blades, which becomes unfavorable for a large number of blades. This is due to the fact, that each rotation is performed 
on a square matrix as a result of the long-range sinc-
interpolation kernel. If a different interpolation kernel was 
used (by convolving each blade with a e.g. Kaiser-Bessel 
filter), the Fourier interpolation could be restricted to 
smaller segments, thus resulting in an improved 
computational performance. 
In conclusion, the proposed approach represents a simple, 
fast and powerful alternative to gridding-based convolution 
techniques for PROPELLER image reconstruction. The 
approach will suffer from increasing computation time only 
in case of an extremely large number of blades. 
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Figure 2: Reconstructed images. Two PROPELLER image are shown, 
reconstructed from measured (left) and simulated (right) phantom data. The resolution 
section of the employed quality phantom was magnified (inset, left) to emphasize the 
achieved resolution.  

Figure 1: Interpolation on rotated grid. Decomposition of rotation into three 
successive shear operations is shown (top row: rotation and shear matrices, middle 
row: corresponding Fourier interpolation, bottom row: Propeller blade example). For 
clarity, the shear terms �tan(φ) and sin(φ) were abbreviated as c1 and c2, respectively.  
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