Fast T1Rho measurements by spin-lock pre-encoded HASTE and bSSFP (SLIPS)

E. A. Mellon¹, S. Niyogi¹, M. Kasam¹, R. S. Beesam¹, W. Witschey¹, A. Borthakur¹, and R. Reddy¹

¹Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States

Objective

To investigate optimal pulse sequences for fast $T_{i\rho}$ measurements and validate them against an established but slower sequence for measuring $T_{i\rho}$. **Background**

Traditional T_{1p} weighted imaging sequences developed for the structural and analytical studies of brain, cartilage, and spine are usually captured over a period of minutes. Adaptations of the standard sequence based on a T_{1p} prepared Turbo Spin Echo (TSE-TSL) were later applied to the *in vivo* measurements of the freely diffusible flow tracer H_2 ¹⁷O water¹ as well as to the measurement of ¹⁷O₂ gas conversion to H_2 ¹⁷O as a marker of cellular metabolism². However, these adaptations have only been able to achieve imaging times of 10-25 seconds/image. This is insufficient in the light of recent developments in ¹⁷O₂ gas delivery, where precise amounts of ¹⁷O₂ gas are inhaled by subjects over 20 seconds and the resultant regional metabolism is calculated over the next 30-60 seconds of signal change. This challenge prompted us to investigate sequences with high temporal resolution that retained both sensitivity to H_2 ¹⁷O as well as an acceptable SNR efficiency.

Methods

The same phase-alternating spin lock (SL) cluster³ was pre-pended to standard Siemens 2D b-SSFP (SLIPS), HASTE, and TSE sequences. These were run on the same slice of six 15mL conical phantoms filled with PBS and serially diluted $H_2^{17}O$ to concentrations of 20mM (natural abundance) to 45mM, sealed and submerged in a 9cm diameter bottle of water. The bottle was placed in the center of a GE T/R birdcage head coil in a 1.5T Siemens Sonata clinical MR scanner. $T_{1\rho}$ constants for each $H_2^{17}O$ concentration were generated by using 6 spin lock times between 1-1000ms. The SLIPS and HASTE sequences were also compared on the same slice of the brain of pig *in vivo*.

Figure 3. Decreases in measured T_{1p} due to H_2 ¹⁷O in the phantoms for each sequence. At 200Hz of spin-lock, the SLIPS sequence is slightly more sensitive to ¹⁷O concentration than HASTE-TSL and TSE-TSL (as indicated by the slope of the linear fit), however it was not possible to find sequence parameters for HASTE and TSE-TSL to eliminate moderate to severe artifacts at 100Hz to get reliable T_{1p} . As a result, the SLIPS sequence is shown to be more sensitive, especially at 100Hz, to ¹⁷O concentration when compared to the new HASTE-TSL and standard TSE-TSL sequences.

Here we have shown for the first time that it is feasible to collect fast T_{1p} weighted images, on the order of 1-2 seconds, for the quantification of contrast agents. We have compared two novel pulse sequences, SLIPS and HASTE-TSL, and found improved contrast sensitivity, reduced artifact, and improved SNR with the SLIPS sequence. Work is also underway to further compare these sequences to SLEPI⁴ and T_{1p} -prepared spin locked SE-EPI. Another abstract was also submitted to show the utility of the SLIPS sequence to quantify metabolically-produced brain $H_2^{17}O$ in pigs given $^{17}O_2$ gas. **References 1**. Tailor, et al. Magn Reson Med 2003;49:479-87 2. Tailor, et al. Neuroimage 2004;22:611-8

3. Charagundla, et al. J Magn Reson 2003;162:113-21 4. Borthakur, et al. J Magn Reson Imaging 2006;23:591-6

Funding for these studies was provided in part by NIH R01-EB004349 and P41-RR002305 as well as funding from the DANA foundation.