
 

Conclusion and Discussion 
A method which adapts selective excitation RF 
pulses to realistic experimental conditions is 
presented. The simulations shown in this abstracts 
are considered as a proof of principle. The impact 
of these newly designed pulses in real experiments 
has to be tested in the near future. For future 
applications, an extension of the concept to handle 
parallel transmit pulses is straightforward and will 
have almost no influence on the calculation times. 
Further, investigating optimised k-space 
trajectories as well as the incorporation of time 
dependent off-resonance effects (such as eddy 
currents) has to be performed. 
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Introduction 
Multidimensional spatially selective excitation is an important concept [1], e.g. in the field of in vivo spectroscopy or for the challenging task of correcting subject-
induced B1 field inhomogeneities at high field. Recent hardware improvements allow selective excitation pulses in combination with parallel transmit technology 
(multiple RF transmitters) [2]. However, thus far the computation of these pulses is based on a simplified physical model neglecting relaxation and most of the 
important off-resonance effects during the pulse. The present approach provides a numerical method to design selective pulses under realistic experimental conditions 
by utilising general numeric Bloch equation simulations on a high performance computer. 
 
Methods 
Within the common physical model for selective excitation, which neglects relaxation and assumes small tip angles, a desired (complex) transverse magnetisation 
pattern, Mp, is given by  
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where M0 is the equilibrium magnetisation, k(t) is a given k-space trajectory, and B1 is the unknown complex RF pulse. A spatially and temporally discrete version of 
Eq. (1) can be solved for B1 by suitable generalised matrix inversion methods. The efficiency of such pulses under relaxation and off-resonance were tested by using the 
MRI simulator package JEMRIS [4]. This simulator performs a general numerical solution of the Bloch equation, i.e. it explicitly accounts for relaxation effects during 
the application of the RF pulse. Further, it accounts for important off-resonance effects, ∆ω, such as microscopic random field fluctuations (simulating T2

*), 
macroscopic deterministic field inhomogeneities, nonlinear gradient fields, concomitant fields, chemical shift, and susceptibility variations. Therefore, the influence of 
these effects on selective excitation can be individually studied in a controlled manner. JEMRIS is entirely written in C++ and it utilises a variable time stepping Bloch 
equation solver and a master-slave parallelisation topology, allowing the simulation of a large spin ensemble. Here, all simulations were performed on a 16 dual-core 
CPU Opteron cluster. 
The simulator computes the effective transverse magnetisation, Me(x,t), which is used to correct the RF pulse in order to account for effects not governed by Eq. (1). 
Thus, a minimisation problem is formulated and individually solved for all time steps n⋅∆t (n=1,�,N) , where n⋅∆t=T equals the pulse length: 
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Here, the difference between the desired magnetisation pattern and the effective magnetisation pattern is minimised with respect to the imaginary and the real part of 
B1= B1x,+ i B1y. The starting point (B1x,B1y) for each of the N consecutive 2D minimisation problems is taken from the solution of Eq. (1). Note that the temporal 
sampling of B1 is taken from the discrete version of Eq. (1), whereas the time evolution of the effective magnetisation is computed with much higher accuracy by the 
simulator, i.e. within each interval ∆t the Bloch equation is individually solved for each spin isochromat on a parallel computer and the results are merged to compute 
the norm in Eq. (2). Once a minimum is found for the n-th step of the RF pulse, the final magnetisation states are taken as the starting condition for the next step. 
 
Results 
Exemplarily, for an homogeneous spherical object (T1=1000 ms, T2=10 ms; see Fig. 1a) a desired magnetisation pattern (Fig. 1b) was defined and the corresponding 
RF pulse (Fig. 2a) for a spiral k-space excitation trajectory (Fig. 2b) was computed according to Eq. (1). Simulations were performed for ≈ 30,000 spins and adding 
small random field fluctuations to each spin isochromat resulting in an effective transverse relaxation time of approx. T2

*=8 ms. The resulting transversal magnetisation 
pattern excited by the  RF pulse is depicted in Fig. 1c. Note, that this pattern is not the result of an (simulated) imaging sequence but it is the effective pattern of excited 
spins directly after the pulse. In comparison, the optimised RF pulse sequence computed with the new approach is depicted in Fig. 2c and the corresponding simulated 
pattern of excited spins is shown in Fig. 1d. 
 

Figure 1 Figure 2 

b) 

a) 

c) 

Proc. Intl. Soc. Mag. Reson. Med. 15 (2007) 1706


