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Introduction: For certain applications such as fast imaging and multi-dimensional RF excitation it is advantageous to traverse k-space non-uniformly. However, this 
introduces the need to compensate the k-space samples (acquired in the context of image reconstruction, or, designed in that of low flip angle RF excitation) for 
trajectory density variations [1]. Methods that have been proposed for density compensation [2-4] range from analytic solutions applicable to only certain trajectories, to 
heuristic methods relying e.g., on geometrical arguments such as k-space area, to numerical approaches that attempt to optimize the achieved point spread function, 
typically using some ad hoc criterion. It is shown that the need for density compensation arises when each Fourier basis (F.b.) function corresponding to some k-space 
location visited by the trajectory is not orthogonal to the F.b. functions corresponding to other k-space locations. When this is the case, the coefficient that effectively 
becomes associated with each F.b. function is no longer that corresponding to the moment of traversal of the particular k-space location, but rather, it is a linear 
combination of partial contributions from coefficients corresponding to other locations in the trajectory when the respective F.b. functions have some component 
parallel to the F.b. function corresponding to the coefficient of interest. An exact linear system can be analytically formed (for typical FOV geometries), and can even 
be solved non-iteratively for relatively short trajectories (e.g., <20 ms), such as those used in RF excitation. The structure of the system also provides valuable insight 
into aspects of trajectory design, such as maximum amount of information that can be expressed, and when it may be possible to incorporate e.g., additional constraints 
in the context of RF excitation. 

Theory: Let c j  be the Fourier transform coefficient (to be applied for RF excitation, or, acquired during imaging) corresponding to the k-space location traversed at 
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k j  denotes the k-space location traversed at time t , 

and 
  

r 

r  denotes spatial location. When the F.b. function 
  

fj (
r 

r ) is not orthogonal to some other F.b. functions corresponding to other locations in the traversed k-space, 

  

f ′ j (
r 

r )  for j ≠ ′ j , we can analyze each 
  

f ′ j (
r 

r )  into two components: one parallel to 
  

fj (
r 

r ), and one orthogonal to it. Specifically, we may always express 

  

f ′ j (
r 

r ) = α ′ j , j fj (
r 

r ) + g(
r 

r ), where 
  

α ′ j , j = f
′ j 

r 

r ( )( ) f
j

r 

r ( )( )*
d
r 

r 
R∫ , and where 

  

g
r 

r ( )( ) f
j

r 

r ( )( )*
d
r 

r 
R∫ = 0, where * denotes complex conjugation. Accordingly, when 

the coefficients c j  are directly Fourier transformed to reconstruct the imaged sample, or, when the low flip angle RF excitation is applied, the effective coefficient that 

becomes associated with the F.b. function 
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r ) under consideration; density compensation is then the process by which the applied coefficients c j  are chosen so that the effective coefficients b j  that 
emerge via the linear combination of Eq. [1] are precisely those desired (i.e., those measured during signal acquisition, or those designed for RF excitation).  Equation 
[1] represents a linear system of dimensions n × n , when 

  

j = 1,Kn  (i.e., the trajectory is composed of n elements). The integrals of Eq. [1] depend on the region R 

wherein we desire to express information content. When R is a square FOV, the integral can be evaluated as 
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Methods: Experiments were performed on a 1.5T MR scanner (GE Medical Systems, Milwaukee, WI) equipped with 4G/cm, 15 G/cm/ms gradients, and using the 
body coil for RF receive/transmit  (max B1=250 mG). Three reversed spiral trajectories were designed to maximize slew rate for a 17 cm design FOV: a 5.6 ms 12-loop 
linearly decreasing density, and a 6 ms 13-loop and a 19 ms 28-loop fixed density trajectories. RF excitations were designed to excite, at 30 degree flip, (a) a square of 
side 6.2 cm (designed for the 5.6 and 6 ms trajectories), and (b) an arbitrary profile covering a large portion of the FOV (designed for the 19 ms trajectory). The RF 
excitations were compensated using the heuristic Voronoi tessellation method [3], the iterative Same-Image method [4], and, the proposed method. For the proposed 
method, the linear system was extended with a simple first order finite difference. This provided regularization so that the system could be solved trivially by Cholesky 
factorization (0.5 sec computation time), and, produced smooth solutions that are desired for RF excitation fidelity. The 90-degree excitation of a standard spin echo 
sequence was replaced by the 2D RF pulses so that the 2D profiles were excited orthogonally to the refocusing pulse, which thus refocused only a slice of the profile. 
This sequence was used to image a spherical phantom occupying a 34 cm FOV so that the first aliasing sidelobe of the excitations could be imaged. Imaging parameters 
were 7.81 kHz BW, 300 ms TR, 9 ms TE, 20 mm slice thickness, 256 
matrix size, 6 NEX, and SNR of ~100. Normalized root-mean-square 
errors (NRMSEs) were computed for experimental results, as well as 
for Bloch equation simulations of the excitations. 
Results: The figure summarizes results obtained with the 6 ms 
trajectory and square profile. NRMSEs were lower for the proposed 
�Cross-Correlations� method. Similar results were obtained for the 
other trajectories and profiles. The final column shows the case where 
the designed RF field was compensated for a square FOV. In general 
this is not possible for spirals since the first aliasing sidelobe is a ring. 
This was verified by results (not shown) obtained for the solution 
obtained by the proposed method for a square FOV compensation, 
and the arbitrary excitation profile that covered the majority of the 
disk FOV. However, when it is known that the extent of the desired 
excitation profile is sufficiently smaller than the design FOV of the 
spiral, it can be seen that it is possible to obtain a small excitation 
error even for a square FOV. Note the NRMSEs of the last column 
were computed within the entire plotted square, whereas for the other 
methods only the difference within a disk was used.  
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Figure 1. Top row: experimentally measured excitation profiles for a 6 ms reversed spiral
trajectory and RF field designed to produce a square of 6.2 cm and compensated using
different density compensation methods. Middle and bottom rows: difference between
simulated and experimental excitation profiles and desired profile designed.  
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