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Fig 3: Tikhonov vs. Optimal SAR RF Design 
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INTRODUCTION: Recent methods of designing RF pulses for multi-coil TX systems have focused on solving regularized 
systems of equations. These techniques linearize the equations relating the RF waveforms to the resulting excitation 
and then penalize RF candidates with high peak and root-mean-square (RMS) voltages (VP and VRMS, respectively) in 
an attempt to limit SAR [1,2]. This is sensible because in single-coil systems, SAR scales directly with VP and VRMS. In 
multi-channel systems, however, the simultaneous transmission of pulses through multiple coils causes their E-fields to 
interact, possibly adding constructively, which may significantly affect SAR. We account for these interactions in RF 
design techniques for multi-coil TX systems by explicitly optimizing SAR. This builds on Zhu�s linear-algebraic 
formulation and optimization of SAR when designing RF pulses on P-channel TX systems [3], which requires 
knowledge of the steady state E-fields generated per unit of power sent to each TX coil, the tissue�s electrical 
properties and spatial sensitivity profiles (B1 maps) of each coil. Then we pose optimization problems that produce 
RF pulses with optimal SAR characteristics. In particular, we provide a closed-form solution for optimizing mean 
SAR, introduce a method to explore excitation fidelity, mean SAR and pulse duration tradeoffs, pose a constrained 
optimization problem that ensures 10g average SAR meets certain constraints, and show that RF pulses generated 
by a mean SAR optimization algorithm have better properties than those produced via Tikhonov regularization. 
METHODS: Regularized RF pulse design. For a P-channel TX system, linearizing and discretizing the equations 
relating the RF pulses played through each coil to the resultant excitation yields m=Abfull [2,4], where m is an Mx1 
vector of the target excitation�s samples in the region of interest and bfull a PTx1 voltage vector of samples of the 
RF waveforms containing T samples of each coil�s RF pulse b1,p(t). A is an MxPT matrix incorporating each coil�s 
B1 map and the fixed k-space trajectory. An example of a regularized RF design algorithm is a Tikhonov 
regularization: min ||m-Abfull||2 + λ||bfull||2, with λ penalizing high-energy bfull candidates. 
Linear-algebraic formulation of SAR and design of RF pulses with optimal SAR characteristics. 
Analogously to Zhu [3], we derive a matrix-vector expression for s(r), the SAR at spatial location r, defined 

as
2
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=∑ E , where w(r)=σ(r)(2ρ(r))-1, σ(r) and ρ(r) are the conductivity and mass density, 

respectively, and E(r,t) is the complex-valued 3-D E-field at r at time t [5]. This E-field is a linear superposition 
of each TX coil�s E-field, scaled by the RF playing along each: E(r,t)=b1,1(t)E1(r,t) + � + b1,P(t)EP(r,t), where 
b1,p(t) is the RF played along the pth coil at t and Ep(r,t) is a complex-valued 3-D vector of the E-field at location 
r and time t generated by the pth coil. This may be written compactly as follows: E(r,t) = F(r,t)b1(t), where 
F(r,t)=[E1(r,t),�,Ep(r,t)] and b1(t)=[b1,1(t),�,b1,P(t)]T. Substituting this into s(r) yields: 
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=∑ b F F b = w(r)bHG(r)b, 

where b=[b1
H(1),�,b1

H(T)]H (b is simply a permutation Z of bfull) and G(r) = 
diag(FH(r,1)F(r,1),�,FH(r,T)F(r,T)). The block-diagonal G(r) describes the E-fields over time at location r and 
s(r) is quadratic in b. Now we form a vector of SAR at R points in the region of interest: s = [s(r1),�,s(rR)]T. 
                                            s=W[bHG(r1)b,�,bHG(rR)b]T=W(IR ⊗ bH)[GH(r1),�,GH(rR)]Hb, 
where W=diag(w(r1),�,w(rR)), IR is the RxR identity matrix and ⊗ is the Kronecker product. Because the G(ri), 
W and T are known, SAR at each point depends only on b. Note: we assume no coupling between coils; cross-
terms must be added if coupling is indeed present. Now that we have a tractable expression for s, and recalling 
the m=Abfull=AZb=Fb system of equations [2,4], we may now solve any optimization that explicitly constraints or regularizes SAR, e.g., minb ||m-Fb||2 s.t. ||s||

∞
≤ M. 

Closed-form solution for mean-SAR optimization. We explore optimally minimizing the residual error (i.e., maximizing the excitation fidelity) while limiting the 
mean SAR. First, we compute the mean SAR by analyzing E[s] = R-1(s(r1) + � + s(rR)) = R-1[w(r1)bHG(r1)b + � + w(rR)bHG(rR)b] = bHQb, which shows E[s] is 
quadratic in b, in agreement with [3]. Whereas Zhu solves the following constrained optimization: minb bHQb s.t. m=Fb [3], we minimize mean SAR in a different 
manner by relaxing the linear constraint m=Fb and introducing a Lagrange multiplier. Defining the cost function J(b) =||m-Fb||2 + λE[s(b)] = ||m-Fb||2 + λbHQb, one 
may show that b*=[FHF+λQ]-1FHm is the optimal closed-form solution that minimizes J(b). Since Q, F and m are known, this optimal solution b* is simply a function 
of λ.  When λ is fixed, b* may be rapidly computed by solving [FHF+λQ]b=FHm via a conjugate-gradient method. After solving for b*, it may be substituted back into 
the mean SAR and residual error equations, reducing them to functions of λ as well. 
Exploring excitation fidelity, SAR and pulse duration tradeoffs. Solving the system above for many values of λ∈ [0, ∞) generates a curve of the lowest residual 
error ||m-Fb||2 achievable vs. µSAR. This allows one to explore the entire range of fidelity-SAR tradeoffs. One may extend this concept by allowing T to vary as well, i.e., 
turning the number of pulse samples (and hence overall pulse duration) into a free variable. Then solving the system of equations for many (T, λ) pairs generates a 
contour of the best residual error achievable for a given µSAR and pulse duration, illuminating fidelity vs. µSAR vs. pulse duration tradeoffs. 
10g SAR optimization. We now pose a constrained optimization that provides the highest-fidelity excitation while ensuring N total 10g SAR averages meet fixed 
constraints: minb ||m-Fb||2 s.t. bHQ1b ≤ M1,�,bHQNb ≤ MN, where Qn = Σi G(ri), ∀ i∈ In, and In is an index set into the {ri} designating 10g of tissue, i.e., Σi ρ(ri) = 10g. 
E-field calculations. Steady-state E-fields in one slice of a 29-tissue, high-resolution (1x1x2mm3) anatomically-accurate segmented head model are computed via finite 
difference time domain simulations of an 8-channel system at 7T [6], yielding Ep(r,t) for each of the P=8 coils. There are ~30k pixels in the region of interest, so 
R=30k. The system and a slice of the head model are illustrated in Fig. 1. Since tissue properties are present in the model, each of the G(ri) and Q are computable. 
RESULTS: We fix the k-space trajectory to be a 2-D spiral with an acceleration factor of 4 and the target to be an MIT logo. B1 maps from an 8-coil system are known 
[7], so m and A are implicitly defined. The RF waveforms are uniformly sampled with ∆t=5µs and T=484, so the duration of each RF pulse is ~2.4 ms. In Fig. 2, 
optimal residual error vs. mean SAR tradeoffs are explored. To prove that the mean-SAR optimization method outperforms standard regularized-pulse designs, we 
design a Tikhonov-regularized RF pulse set (using the LSQR algorithm [8,9]) and a mean-SAR optimized set, tuning the parameters of each method such that the 
resulting pulses yield equal-fidelity excitations. Fig. 3 compares the voltage and SAR of the pulses generated by each method. Even though the Tikhonov-regularized 
pulses have lower VRMS, they generate 1.29x higher µSAR, which reinforces our claim that E-field interactions in parallel TX systems significantly influence SAR. 
ACKNOWLEDGEMENTS & REFERENCES: NIH P41RR14075, US DoD NDSEG Fellowship, R. J. Shillman Career Dev Award. [1] Yip et al. Iterative RF pulse design 
for multidimensional, small-tip angle selective excit. MRM. 2005;54(4):908-917. [2] Grissom et al. Spatial Domain Method for the Design of RF Pulses in Multicoil 
Parallel Excit. MRM. 2006;56(3):620-629. [3] Zhu. Parallel Excit with an Array of Trans Coils. 2006;51:775-784. [4] Grissom et al. A new method for the design of RF 
pulses in Trans SENSE. 2nd Int�l Workshop on Parallel Imaging, 2004; 95. [5] Katscher et al. Parallel RF trans. in MRI. NMR Biomed, 2006;19:393-400. [6] Angelone 
et al. Effect of TX array phase relationship on SAR. ISMRM 2006. [7] Setsompop et al. Parall RF Trans with 8 Chan at 3T. MRM. 2006;56(5):1163-1171. [8] Paige et 
al. LSQR: An algorithm for sparse linear eqns and sparse least squares. ACM Trans. Math. Soft., 1982;8(1):43-71. [9] Zelinski et al. RF Pulse Design Methods for 
Reduc of Image Artifacts in Parallel RF Excit. ISMRM 2007. 

Fig 1: (a) 8-Coil Sys. (b) Head Model 

Fig 2: Optimal Mean SAR vs. Excit. Fidelity 
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