DESIGNING FAST 3-D RF EXCITATIONS BY OPTIMIZING THE NUMBER, PLACEMENT AND WEIGHTING OF SPOKES IN K-SPACE VIA A SPARSITY-ENFORCEMENT ALGORITHM

A. C. Zelinski ${ }^{1}$, K. Setsompop ${ }^{1}$, V. K. Goyal ${ }^{1}$, V. Alagappan ${ }^{2}$, U. Fontius ${ }^{3}$, F. Schmitt ${ }^{\mathbf{3}}$, L. L. Wald ${ }^{2,4}$, and E. Adalsteinsson ${ }^{1,4}$
${ }^{1}$ Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States, ${ }^{2}$ A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States, ${ }^{3}$ Siemens Medical Solutions, Erlangen, Germany, ${ }^{4}$ Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, United States

INTRODUCTION: Playing sinc-like RFs in the presence of slice-selective gradient trajectories is useful for exciting a thin slice in z and is analogous to placing sinc-like "spokes" along k_{z} in excitation k-space. Recently, the use of multiple complexweighted spokes at different locations in the (k_{x}, k_{y}) plane has led to RF pulses that mitigate B_{1}-inhomogeneity in single-coil excitation systems [1] and reduce excitation time (TE) on multi-channel systems [2]. While placing a tall spoke in k-space does indeed significantly increase pulse duration and minimum TE, it is a necessary tradeoff to ensure a sharp slice profile with low sidelobes. Because of this high temporal cost per spoke, an ideal thin-slice design would be one that used very few spokes while achieving a user-specified excitation in the (x, y) plane with high-fidelity. To achieve this, we propose an algorithm that optimizes the number, placement and weighting of spokes, based on sparse approximation theory. First we show the theory encompasses RF design for multi-channel excitation systems, with single-channel systems as a base case. We then show the method generates fast, high-fidelity slice-selective pulses, achieving near-optimal tradeoff of TE \& excitation fidelity. Experiments conducted in a phantom on a 3 T Siemens Magnetom TRIO with an 8 -channel parallel TX array show the algorithm's advantages over traditional (k_{x}, k_{y}) spoke placement patterns.
METHODS AND RESULTS: Sparse approximation (SA). The goal of SA is to find a vector or matrix of unknowns with a small number of nonzero elements such that a system of equations approximately holds, e.g., $\mathbf{m}=\sum_{p=1}^{P} \mathbf{F}_{p} \boldsymbol{\varphi}_{p}+\mathbf{n}$, where $\mathbf{m}, \mathbf{n} \in C^{M}, \mathbf{F}_{p} \in C^{M \times N}, \boldsymbol{\varphi}_{p} \in C^{N}$, and $N>M$. This problem is ill-posed because there are infinitely many choices of $\boldsymbol{\varphi}_{p}$ vectors that solve it. But consider enforcing sparsity on the $\boldsymbol{\varphi}_{p}$, requiring the l_{1}-norm of each to be small, which is similar to requiring many elements of each $\boldsymbol{\varphi}_{p}$ to equal zero [3]. Suppose we further constrain the $\boldsymbol{\varphi}_{p}$, requiring them to be simultaneously sparse: each of the φ_{p} must have nonzeros occurring at a similar set of indices. With such requirements, the problem is no longer ill-posed. Letting $\boldsymbol{\Phi}=\left[\varphi_{1}, \ldots, \varphi_{P}\right]$, a program that finds a simultaneously sparse set of $\boldsymbol{\varphi}_{P}$ and approximately yields \mathbf{m} is as follows: $\min _{\boldsymbol{\Phi}}(1-\lambda)\left\|\mathbf{m}-\left(\sum_{p=1}^{P} \mathbf{F}_{p} \boldsymbol{\varphi}_{p}\right)\right\|_{2}+\lambda\|\boldsymbol{\Phi}\|_{\mathrm{S}}$, where the second term, $\|\boldsymbol{\Phi}\|_{\mathrm{S}}$, is the l_{1}-norm of the l_{2}-norms of the rows of $\boldsymbol{\Phi}$, a simultaneous sparsity norm that penalizes (rewards) the program when the columns of $\boldsymbol{\Phi}$ have dissimilar (similar) sparsity profiles. The first term keeps the residual error down. As λ increases
 from 0 to 1 , sparser solutions are generated while the residual error increases, i.e., λ trades off sparsity with residual error. Because the objective function is convex, there exists an optimal solution $\boldsymbol{\Phi}^{*}$ that attains the global minimum. $\boldsymbol{\Phi}^{*}$ may be computed via a Second-Order Cone program. Refer to [3,4] for more details.
Proposed algorithm. Our goal is to excite a thin, sharp slice that approximately equals a user-specified target excitation $m(x, y)$ at $z=z_{0}$ and zero at $z \neq z_{0}$. To accomplish this, we must decide on a number of spokes to use, their locations in (k_{x}, k_{y}), and weights for each. Using spokes in k_{z} will let us obtain a thin slice in z. But achieving the in-slice target $m(x, y)$ is more complicated: ideally, many weighted spokes would be placed in $\left(k_{x}, k_{y}\right)$ such that $m(x, y)$ was almost exactly achieved, but this would require many spokes and result in a long TE. To keep TE short, we must use a small number of spokes, but with few spokes, achieving $m(x, y)$ becomes difficult. Let us define \mathbf{m} to be vector of spatial samples of the $m\left(x, y, z_{0}\right)$ excitation in some region of interest (ROI).
Analogy between spokes and Diracs in 2-D Fourier domain. Placing a spoke in (k_{x}, k_{y}) with some arbitrary complex weight φ is analogous to placing a weightedDirac delta, $\varphi \delta\left(k_{x}, k_{y}\right)$ in the 2-D Fourier domain. Since spokes are expensive in terms of pulse duration, each δ is also expensive. Using this analogy, our goal is now: using a small number of complex-weighted δ 's in 2-D Fourier space, ensure that their 2-D Fourier transform is close to $m(x, y)$ at all points in the region of interest.
Base case $(\boldsymbol{P}=1)$ formulation. Assume a finite grid of discrete points exists in $\left(k_{x}, k_{y}\right)$. Each point is a Dirac delta that produces a complex exponential in the spatial domain. An arbitrary choice of complex weights at different points on the grid results in a spatial domain excitation related to the weighted grid by a Fourier transform. Arranging the complex weights of this grid into the vector $\boldsymbol{\varphi}_{1}$, the following holds: $\mathbf{r}=\mathbf{D}_{1} \mathbf{A} \boldsymbol{\varphi}_{1}=\mathbf{F}_{1} \boldsymbol{\varphi}_{1}$, where \mathbf{r} is a vector of spatial samples of the resulting (x, y, z_{0}) excitation in the ROI, \mathbf{D}_{1} is a diagonal matrix of samples of the coil sensitivity pattern in the ROI, and $\mathbf{A}_{\mathrm{m}, \mathrm{n}}=\exp \left(j 2 \pi k_{x}[\mathrm{n}] \mathrm{x}[\mathrm{m}]+k_{y}[\mathrm{n}] \mathrm{y}[\mathrm{m}]\right)$ [5]. If the n-th element of $\boldsymbol{\varphi}_{1}$ is nonzero, this corresponds to a spoke at $\left(k_{x}(n), k_{y}(n)\right)$. Thus, a sparse $\boldsymbol{\varphi}_{1}$ that results in an \mathbf{r} close to \mathbf{m} is ideal: it implies a short, high-fidelity excitation.
Extension to parallel systems $(\boldsymbol{P}>\mathbf{1})$. For parallel systems, the formulation extends as follows: $\mathbf{r}=\mathbf{D}_{I} \mathbf{A} \boldsymbol{\varphi}_{l}+\cdots+\mathbf{D}_{P} \mathbf{A} \boldsymbol{\varphi}_{P}=\mathbf{F}_{l} \boldsymbol{\varphi}_{l}+\cdots+\mathbf{F}_{P} \boldsymbol{\varphi}_{P}$, with the constraint that the $\boldsymbol{\varphi}_{p}$ must be simultaneously sparse, which physically means that the RF pulses along each of the P coils (the $b_{1, p}(t)$ waveforms) must each play along the same k-space trajectory. This constraint arises because the system's set of gradients determines a unique k-space trajectory $k(t)$. If the $\boldsymbol{\varphi}_{p}$ were not simultaneously sparse, it would imply the RFs are concurrently played along P different k-space trajectories, which is not possible.
Step I: determine spoke locations. Using as few points on the frequency grid as possible, we want to attain the user-specified \mathbf{m} within the thin-slice, i.e., we want to find a simultaneously sparse $\boldsymbol{\Phi}$ matrix such that the residual error term $\|\mathbf{m}-\mathbf{r}\|_{2}=\left\|\mathbf{m}-\left(\sum_{p=1}^{p} \mathbf{F}_{p} \boldsymbol{\varphi}_{p}\right)\right\|_{2}$ is small. Finding this $\boldsymbol{\Phi}$ is accomplished by fixing λ and solving the optimization program above. With the proper choice of λ, a simultaneously sparse, globally optimal $\boldsymbol{\Phi}$ matrix is found that keeps the residual error down. Step II: keep \boldsymbol{T} spokes and determine $\boldsymbol{P T}$ weights. Since each row of $\boldsymbol{\Phi}$ that contains nonzeros corresponds to a spoke that must be traversed in k-space, we zero out all but T rows of $\boldsymbol{\Phi}$, keeping those with the largest l_{2}-energy. Thus, T is a control parameter explicitly trading off the number of spokes, and hence TE, with excitation fidelity. Since all but T rows of $\boldsymbol{\Phi}$ equal zero, the affine system of equations is now reduced to $\mathbf{r}=\sum_{p=1}^{P} \mathbf{F}_{T, p} \boldsymbol{\varphi}_{T, p}$, where each $\mathbf{F}_{T, p}$ is a truncated matrix whose T columns correspond to the T columns of \mathbf{F}_{p} that remain after discarding all but T rows of $\boldsymbol{\Phi}$. Now, $\boldsymbol{\Phi}_{T}$ is recalculated to attain an excitation closer to \mathbf{m}, i.e., the weights at each of the T spoke locations are retuned for each of the P coils in a least-squares sense via the pseudo-inverse of $\left[\mathrm{F}_{T, 1}, \ldots, \mathrm{~F}_{T, P}\right]$.
Step III: generate an RF pulse set. At this point, T spokes have been placed in k-space at points on the (k_{x}, k_{y}) grid implicitly defined by the $\boldsymbol{\varphi}_{p}$. Further, P weights have been determined for each spoke (one per excitation coil). With this information, a set of RF pulses may be designed using the method in [2].
Results. The proposed method was compared to a non-optimized spoke placement on a grid within a fixed radius. Experiments were conducted in a phantom on a 3 T Siemens Magnetom TRIO equipped with an 8-channel TX array. Each method used 20 spokes and both attempted to excite the dual-phase bifurcation target shown above. In the upper right, the spoke placement in $\left(k_{x}, k_{y}\right)$ used by the traditional method, the optimized spoke placement calculated by the proposed technique, and each method's resulting excitations are depicted. The proposed algorithm's near-optimal spoke placement led to an excitation closely resembling the target. For each design, TE was $\sim 10 \mathrm{~ms}$ and slice thickness was 1 cm . Because both methods used the same sinc-like spokes in k_{z}, they exhibited equivalent slice-selectivity performance.
CONCLUSION: An algorithm that optimized the number, placement and weighting of spokes in k-space was presented and extended from single- to multi-channel TX systems. An experiment using an 8-channel TX array on a Siemens Magnetom TRIO showed that the proposed algorithm outperformed a non-optimized technique. Acknowledgements \& References: Siemens Medical Solns., NIH P41RR14075, US DoD NDSEG Fellowship, R.J. Shillman Career Dev. Award. [1] Saekho et al. Fast- k_{z} 3-D Tailored RF Pulse for Reduc B_{1} Inhomog. MRM. 2006;55(4):719-724. [2] Setsompop et al. Parallel RF Trans w/ 8 Chan at 3T. MRM. 2006;56(5). [3] Chen et al. Atomic Decomp by Basis Pursuit. SIAM Rev, 2001;43(1):129-159. [4] Malioutov et al. Sparse Signal Recon Perspec for Source Localiz with Sensor Arrays. IEEE Trans Sig Proc., 2005;53(8). [5] Grissom et al. Spatial Domain Method for the Design of RF Pulses in Multicoil Parallel Excit. MRM. 2006;56(3):620-629.

