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INTRODUCTION: Playing sinc-like RFs in the presence of slice-selective gradient trajectories is useful for exciting a thin slice 
in z and is analogous to placing sinc-like �spokes� along kz in excitation k-space. Recently, the use of multiple complex-
weighted spokes at different locations in the (kx, ky) plane has led to RF pulses that mitigate B1-inhomogeneity in single-coil 
excitation systems [1] and reduce excitation time (TE) on multi-channel systems [2]. While placing a tall spoke in k-space 
does indeed significantly increase pulse duration and minimum TE, it is a necessary tradeoff to ensure a sharp slice profile 
with low sidelobes. Because of this high temporal cost per spoke, an ideal thin-slice design would be one that used very few 
spokes while achieving a user-specified excitation in the (x,y) plane with high-fidelity. To achieve this, we propose an 
algorithm that optimizes the number, placement and weighting of spokes, based on sparse approximation theory. First we 
show the theory encompasses RF design for multi-channel excitation systems, with single-channel systems as a base case. 
We then show the method generates fast, high-fidelity slice-selective pulses, achieving near-optimal tradeoff of TE & 
excitation fidelity. Experiments conducted in a phantom on a 3T Siemens Magnetom TRIO with an 8-channel parallel TX 
array show the algorithm�s advantages over traditional (kx, ky) spoke placement patterns. 
METHODS AND RESULTS: Sparse approximation (SA). The goal of SA is to find a vector or matrix of unknowns with a 

small number of nonzero elements such that a system of equations approximately holds, e.g., 
1

P

p pp=∑m = F φ + n , 

where m, n ∈ CM, Fp∈ CM x N, φp∈ CN, and N > M.  This problem is ill-posed because there are infinitely many choices of 
φp vectors that solve it. But consider enforcing sparsity on the φp, requiring the l1-norm of each to be small, which is 
similar to requiring many elements of each φp to equal zero [3]. Suppose we further constrain the φp, requiring them to be 
simultaneously sparse: each of the φp must have nonzeros occurring at a similar set of indices. With such requirements, the 
problem is no longer ill-posed.  Letting Φ = [φ1, �, φP], a program that finds a simultaneously sparse set of φP and 

approximately yields m is as follows: ( ) S1 2
(1 )min

P

p pp
λ λ

=
− +∑Φ

m - ΦF φ , where the second term, ||Φ||S, 

is the l1-norm of the l2-norms of the rows of Φ, a simultaneous sparsity norm that penalizes (rewards) the program when 
the columns of Φ have dissimilar (similar) sparsity profiles. The first term keeps the residual error down. As λ increases 
from 0 to 1, sparser solutions are generated while the residual error increases, i.e., λ trades off sparsity with residual error. Because the objective function is convex, 
there exists an optimal solution Φ* that attains the global minimum. Φ* may be computed via a Second-Order Cone program. Refer to [3,4] for more details. 
Proposed algorithm. Our goal is to excite a thin, sharp slice that approximately equals a user-specified target excitation m(x,y) at z=z0 and zero at z≠z0. To accomplish 
this, we must decide on a number of spokes to use, their locations in (kx, ky), and weights for each. Using spokes in kz will let us obtain a thin slice in z. But achieving 
the in-slice target m(x,y) is more complicated: ideally, many weighted spokes would be placed in (kx, ky) such that m(x,y) was almost exactly achieved, but this would 
require many spokes and result in a long TE. To keep TE short, we must use a small number of spokes, but with few spokes, achieving m(x,y) becomes difficult. Let us 
define m to be vector of spatial samples of the m(x,y,zo) excitation in some region of interest (ROI). 
Analogy between spokes and Diracs in 2-D Fourier domain. Placing a spoke in (kx, ky) with some arbitrary complex weight φ is analogous to placing a weighted-
Dirac delta, φδ(kx,ky) in the 2-D Fourier domain. Since spokes are expensive in terms of pulse duration, each δ is also expensive. Using this analogy, our goal is now: 
using a small number of complex-weighted δ�s in 2-D Fourier space, ensure that their 2-D Fourier transform is close to m(x,y) at all points in the region of interest. 
Base case (P = 1) formulation. Assume a finite grid of discrete points exists in (kx, ky). Each point is a Dirac delta that produces a complex exponential in the spatial 
domain. An arbitrary choice of complex weights at different points on the grid results in a spatial domain excitation related to the weighted grid by a Fourier transform. 
Arranging the complex weights of this grid into the vector φ1, the following holds: r = D1Aφ1 = F1φ1, where r is a vector of spatial samples of the resulting (x,y,zo) 
excitation in the ROI, D1 is a diagonal matrix of samples of the coil sensitivity pattern in the ROI, and Am,n=exp(j2πkx[n]x[m]+ky[n]y[m]) [5]. If the n-th element of φ1 is 
nonzero, this corresponds to a spoke at (kx(n), ky(n)). Thus, a sparse φ1 that results in an r close to m is ideal: it implies a short, high-fidelity excitation. 
Extension to parallel systems (P > 1). For parallel systems, the formulation extends as follows: r = D1Aφ1 + � + DPAφP = F1φ1 + � + FPφP, with the constraint that the 
φp must be simultaneously sparse, which physically means that the RF pulses along each of the P coils (the b1,p(t) waveforms) must each play along the same k-space 
trajectory.  This constraint arises because the system�s set of gradients determines a unique k-space trajectory k(t).  If the φp were not simultaneously sparse, it would 
imply the RFs are concurrently played along P different k-space trajectories, which is not possible. 
Step I: determine spoke locations. Using as few points on the frequency grid as possible, we want to attain the user-specified m within the thin-slice, i.e., we want to 

find a simultaneously sparse Φ matrix such that the residual error term ( )2
21

P

p pp=
= ∑m - r m - F φ is small. Finding this Φ is accomplished by fixing λ and 

solving the optimization program above. With the proper choice of λ, a simultaneously sparse, globally optimal Φ matrix is found that keeps the residual error down.  
Step II: keep T spokes and determine PT weights. Since each row of Φ that contains nonzeros corresponds to a spoke that must be traversed in k-space, we zero out 
all but T rows of Φ, keeping those with the largest l2-energy.  Thus, T is a control parameter explicitly trading off the number of spokes, and hence TE, with excitation 

fidelity. Since all but T rows of Φ equal zero, the affine system of equations is now reduced to 
, ,1

P

T p T pp=∑r = F φ , where each FT,p is a truncated matrix whose T 

columns correspond to the T columns of Fp that remain after discarding all but T rows of Φ. Now, ΦT is recalculated to attain an excitation closer to m, i.e., the weights 
at each of the T spoke locations are retuned for each of the P coils in a least-squares sense via the pseudo-inverse of [FT,1, �, FT,P].  
Step III: generate an RF pulse set.  At this point, T spokes have been placed in k-space at points on the (kx, ky) grid implicitly defined by the φp.  Further, P weights 
have been determined for each spoke (one per excitation coil). With this information, a set of RF pulses may be designed using the method in [2].  
Results. The proposed method was compared to a non-optimized spoke placement on a grid within a fixed radius.  Experiments were conducted in a phantom on a 3T 
Siemens Magnetom TRIO equipped with an 8-channel TX array. Each method used 20 spokes and both attempted to excite the dual-phase bifurcation target shown 
above. In the upper right, the spoke placement in (kx, ky) used by the traditional method, the optimized spoke placement calculated by the proposed technique, and each 
method�s resulting excitations are depicted. The proposed algorithm�s near-optimal spoke placement led to an excitation closely resembling the target. For each design, 
TE was ~10 ms and slice thickness was 1 cm.  Because both methods used the same sinc-like spokes in kz, they exhibited equivalent slice-selectivity performance. 
CONCLUSION: An algorithm that optimized the number, placement and weighting of spokes in k-space was presented and extended from single- to multi-channel TX 
systems. An experiment using an 8-channel TX array on a Siemens Magnetom TRIO showed that the proposed algorithm outperformed a non-optimized technique. 
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