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RF PULSE DESIGN METHODS FOR REDUCTION OF IMAGE ARTIFACTS IN PARALLEL RF EXCITATION: 
COMPARISON OF 3 TECHNIQUES ON A 3T PARALLEL EXCITATION SYSTEM WITH 8 CHANNELS 
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INTRODUCTION: Parallel RF excitation allows one to accelerate the trajectory of spatially-tailored excitation patterns to perform 
shaped-volume excitation [1] and mitigate B1-inhomogeneity at high field. We investigate three methods of RF waveform design for 
such systems, comparing a singular value decomposition (SVD)-based method to Least Squares QR (LSQR) [2] and Conjugate 
Gradient Least Squares (CGLS) [3]. The latter two algorithms are designed to quickly and accurately solve large linear systems.  For a 
given k-space acceleration factor (R = 1, 4, 6, 8), the target excitation pattern (a 2-D logo) and k-space trajectory (a 2-D spiral) are kept 
constant, and the target is excited in a phantom using an 8-channel parallel TX array on a 3T Siemens Magnetom TRIO scanner, a 
TIM system [4]. Voltage characteristics of the waveforms produced by each method are compared and correlation coefficients 
between the target and each resulting excitation image are analyzed. 
 
METHODS & RESULTS: Waveform design. The RF waveforms and 
resulting excitation, after linearization via Grissom’s formulation [5], are 

related as follows:
1,1 0
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r is a spatial variable, m(r) the approximate transverse magnetization,γ  
the gyromagnetic ratio, Sp(r) the sensitivity profile of the p-th coil, B1,p(t) 
the RF along the p-th coil, and T the duration of each RF.  k(t) is the 
excitation k-space trajectory, a function of the gradient.  Discretizing this 
equation yields the linear system m=Ab, where m is an Mx1 vector of 
discretized elements of m(r), b is a voltage vector of the sampled B1,p(t) 
and A is an MxN matrix incorporating Sp(r) and k(t). 
Solving m=Ab. One way of approximately solving for b is to use the 
truncated pseudo-inverse of A, generated via an SVD [6].  We solve for b 
using this SVD-based method and also use two other algorithms: LSQR 
and CGLS. Specifically, for a fixed value of R, each algorithm is used to 
generate a set of RF waveforms. The design parameters and RF peak 
voltage of each method are tuned such that the noise floor across all 
images is the same and the flip angles of the resulting excitations are 
approximately equal (within 1-5% for fixed R > 1).  LSQR is similar to 
the regularized pulse design method introduced by Yip [7] and 
subsequently extended to emulated parallel systems by Grissom [8]. 
Correlation coefficients. To compare the excitation images generated by 
each algorithm, the correlation coefficient, C, between each observed 
excitation, O, and the target image, T, is computed and displayed above 
each of the observed excitation images in Figure 1. 1 1( , ) Cov( , )C σ σ− −= O TO T O T , where Cov(O, T) is the covariance between the 

images calculated over the region where at least one coil profile is active and σO , σ T  are the variances of each respective image in 

the same region. C quantifies the similarity between O and T; the closer it is to unity, the more similar O is to T. For fixed R > 1, 
LSQR and CGLS images have higher C values than those from the SVD-based method, implying that LSQR and CGLS produce 
excitations with fewer artifacts that better resemble the target pattern. 
Peak & RMS Voltages. The peak voltage, VP, and root-mean-square (RMS) voltage, VRMS, of each b vector appear below each image 
in Figure 1. For fixed R, LSQR and CGLS yield lower VP and VRMS than the SVD-based method, which implies lower specific 
absorption rates (SAR), in line with Grissom et al.’s observations when designing waveforms for an emulated parallel system [8].  
Further, VP and VRMS grow rapidly as a function of R, which may pose constraints on in vivo applications. Such rapid growth 
underscores the challenge of R >> 1 designs. 
 
CONCLUSION:  By solving a linear system of equations with algorithms tuned for numerical stability, it is possible to achieve parallel 
excitation of the same target pattern with less artifacts and lower peak and RMS voltages than with truncated SVD inversion, as 
demonstrated via experiments conducted on a 3T Siemens Magnetom TRIO, a TIM system, equipped with an 8-channel TX array. 
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