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Introduction 
The Shinnar-Le Roux (SLR) transformation (1) provides a semi-analytic way to solve the problem of RF pulse design. Another tool permitting design of RF pulses 
(although of infinite time support) is the Inverse Scattering Transform (IST). Recently, a formula was derived for the Inverse Scattering Transform (2) permitting the 
computation of the energy of RF pulses from its specification in the spinor domain. This formula is given without demonstration, relying on difficult mathematical 
results. It is also suggested in (2), but again without details, that a similar formula could be attained using the SLR approach. One objective of the current work was to 
derive this relationship using the SLR transformation and in a simple manner. 

Method 
Figure 1 recalls the �hard pulse� approximation used by the SLR algorithm where a continuous envelope 
B1(t) of duration D is approximated by a train of n hard pulses. An intermediary approximation is the 
staircase signal b1(t), which has a time integral equal to the nutation of the corresponding hard pulse for 
each interval. An elementary calculation shows, that the energy of the signal b1(t) is proportional to the 
sum of squares of the nutation as expressed on the left of relation [1] in Fig. 2. Under most circumstances, 
and particularly if B1(t) is continuous, the staircase signal b1 tends towards the continuous signal B1 when 
n increases, and thus its energy E converges towards the energy of the continuous waveform when T 
decreases. Independently, an important result from the SLR algorithm is that the leading coefficient a0 of 
the A polynomial is the product of the cosine of half the nutation angles. This is better expressed taking 
the logarithm and replacing the product by a sum as we have done on the left of the expression [2]. For 
decreasing T, the number n of hard pulses increases, but the log of each cosine decreases quadratically and 
finally the logarithm of a0 tends toward the sum of square of the nutation divided by (-8). Putting together 
the two results, one can express the energy E in proportion of the -ln(a0) as on the left of relation [3]. A 
classical result of discrete signal analysis (3,4) is the ability to express ln(a0) of a minimum phase signal, 
the common choice for A (1), in terms of the mean value on the unit circle of the logarithm of its 
magnitude. This is the first term of the last member of relation [3]. Also, one may chose to take another 
realisation of the A by mirroring one or several zeroes zl along the unit circle (5,6), as shown in Fig. 3. 
Each zero mirroring multiplies a0 by the modulus of the mirrored zero |zl| and this leads to the second term 
in the last member of relation [3]. This readily permits to calculate the energy of the staircase signal b1(t) , 

before the inverse SLR recursion and during the design of the A polynomial. When doing 
that in practice one will replace the integration on the unit circle by the summation of the 
discrete values after an FFT, dividing the result by the number of values nfft. This is feasible 
for a given value of T, but because T appears in the expression [3], one may wonder about 
the convergence of the energy E towards a constant when changing T. When performing 
several designs with T decreasing, one can observe a simple contraction of the response on 
the unit circle (Fig. 3), in accordance to the mapping on the unit circle expressed by [4], but 
also a convergence of the zeroes of the A polynomial towards the unit circle corresponding 
to the general mapping giving in [5]. Rewriting [3] with the aid of [4][5] gives the energy in 
terms of the Fourier transform of a continuous signal as in [6], where T disappears. This can 
be considered as the energy of the continuous excitation B1(t) towards which b1(t) 
converges, and it is the strict equivalent of equation 50 in the reference (2), the discrepancy 
by a factor of two coming from the fact that all the radial frequencies has been divided by 
two in reference (2) compared to their accepted physical meaning. 

Results 
In practice, at least in he context of SLR design, one will use the discrete formula [3], 
pertaining to a particular Z plane . This easily permits to predict the energy cost of any 
zero mirroring. To verify the relationship, a pulse was designed with a time bandwidth 
of 5, Fig. 3. The zeroes of the A polynomial in the passband of the RF pulse were 
systematically flipped, leading to a ratio of the energy, obtained simply by summation 
of the |b1 |

2 waveform, over the values obtained by [3] of 0.996±0.002, verifying our 
derivation. In practise though, the blind use of the Remez algorithm would lead to 
spikes at both ends of the RF pulse, and the energy will increase when T decreases. To 
guarantee convergence of b1 towards a continuous signal B1 but also, more 
pragmatically, to redude energy and peak power, one must use an Interpolated FIR 
filter (IFIR) (7) procedure when designing the B polynomial. Then the results obtained 
by [3] stabilize, becoming independent of T as soon as this value of T is small enough.  
Conclusion 
A correct relation [6] giving the energy of RF pulse has been derived. In contrast to 
the IST derived equation (2), it is valid for finite time support excitations. 
References 

1) J.Pauly, IEEE Trans. Med. Imag. 10, 53-65 (1991) . 2) C.L.Epstein,JMR 167,185-210 (2004). 3) A.Papoulis, Signal Analysis, McGraw-Hill (1977). 4) A.V. 
Oppenheim Digital Signal Processing, Prentice-Hall (1975). 5) P. Le Roux, French Patent 8610179 (1986), US 4940940 (1990). 6) S.Pickup, MRM 33,648-655 (1995) . 
7) D.F.Elliot, Handbook of Digital Signal Proc., Prentice-Hall (1975)  

b (t)
1

θ n ϕ
n

θ 0ϕ0

D=(n+1)T0

T

B  (t)
1

Figure 1: Depiction of a continuous excitation B1(t) 
modeled by an hard pulse train, as in SLR. The 

intermediary staircase signal b1(t) is useful for the 
analysis. 
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Figure 2: Mathematical relations used in text. 

 
 

Figure 3: Complex z-plane position of the zeroes of the minimum phase A with 
n=50 (left) and n=100 (right). When reducing T there is a contraction of the 

response on the unit circle and corresponding movement of the zeros position 
with an increase of their radius, according to Eq [5]. 
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