
Figure 1: Block diagram of our software architecture. Plugins are
activated as desired to produce arbitrary waveforms or spin conditions;
software controllers translate plugin state for input to a highly
parallelized Bloch simulator, which computes values for subsequent

An Extensible, Graphical Environment for Pulse Sequence Design and Simulation

W. R. Overall1, and J. M. Pauly1
1Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction: Pulse-sequence conceptualization, simulation, and hardware
programming are usually distinct development stages, with similar code
rewritten at each step. Additionally, each hardware vendor maintains a
unique, proprietary programming environment. As a result, no freely
available code library exists for standard pulse sequences, and sequences are
not portable across vendors. We have developed a simple, extendable, freely
available environment for rapid pulse sequence programming and
simulation. Our software, named �SpinBench� [1], combines computation
speed with easy expandability by isolating the optimized simulator code
from the plugin modules that provide additional functionality. Using this
software, many pulse sequences can be designed and simulated using the
software�s built-in graphical tools. Plugin APIs are provided to allow
specialized pulse types or simulations of unusual physical phenomena.

Methods: Our software leverages the XCode software development
environment available within Mac OS X, which provides high-level
document operations including Load, Save, Cut, Paste, and Undo without
explicit programming effort. The software structure (Fig. 1) includes a
multithreaded Bloch-equation simulator that uses all available processors for
fast simulation. To optimize simulation speed, this simulator block accepts
only a minimum set of inputs (T1, T2, frequency, etc.). A plugin
architecture is used to specify higher-level structures including waveform
types (trapezoid, spiral, slice-selection, etc.) or spin environments (motion,
T2*, receiver phase, phantom characteristics, etc.). Software controllers
organize the active plugins and translate their state into inputs recognized by
the Bloch simulator. After simulation, outputs can be displayed as a graph,
image, Fourier transform, or scatterplot. Any floating-point Bloch input or
plugin parameter can be specified as the independent axis or axes.
 Significant time savings result from distilling parameters to the minimum
set prior to the time-consuming Bloch simulation. The default simulation
algorithm computes signal independently for each value over the desired
range [2], with culling operators used to skip unnecessary iterations. While
other simulation techniques (including [3,4]) may be faster in certain cases, this approach places no assumptions on the experiment, and its
independent measurements are extremely well suited to parallelization.
 An external plugin-writing environment is provided for extensibility, consisting of a set of documented Objective-C APIs and a code library of
existing plugins for use as a starting point. Plugins typically require a minimum of coding, and may or may not have an associated inspector pane for
graphical selection of parameter values. A plugin may specify new RF pulses, gradient waveforms, unique physical conditions, or simulate a
specific phantom. If SpinBench does not have the appropriate plugins when a sequence file is loaded, a window notifies the user and directs them to
the plugin�s author, if known. APIs also exist for converting sequences and data to and from other file types; this capability may be used to directly
produce code for use on major vendors� hardware. In this way, SpinBench can be a platform-independent sequence-development tool.

Results: The program interface (Fig. 2) consists of a main window showing the current pulse sequence and
simulator results, and inspector windows that allow parameter and plugin manipulation. Fig. 2 plots a
simulation of slice-selective SSFP signal for 3 different T2 values as a function of tip. This simulation
required 4 sec. on a 2.5-GHz Dual-PowerPC G5 system. For comparison, the same simulation required
more than 2 min. of computation time when implemented in Matlab. Computation times generally range
from instantaneous to minutes depending upon simulation complexity. Several plugin modules have been
created and used in our research, including the magnetic dipole signal arising from an iron particle in a
rephased SSFP experiment as shown in Fig. 3. This simulation was completed in 3 min., and the plugin
consists of less than 60 lines of code, most of which is housekeeping code copied from an existing plugin.

Discussion: We have developed and demonstrated a flexible, vendor-independent MR signal simulator
and pulse-programming environment. Parallel code execution allows fast simulation without sacrificing
accuracy, and plugin APIs allow arbitrary functionality. The software, plugin APIs, and a library of
sample plugins are available for download over the web [1].
 Further code optimization is possible to fully exploit parallelism and to avoid unnecessary
computations. We will also explore the sequence optimizations made possible by integrated spin
simulation, including automated contrast optimization between selected tissues and automated k-space trajectory determination.

References: [1]. http://www-mrsrl.stanford.edu/SpinBench/ [3]. Magland, J, et al. Proc. 14th ISMRM: 2365, 2006.
[2]. Summers, RM, et al. MRM 3(3): 363-376, 1986. [4]. Kwan, RKS, et al. IEEE Trans Med Imag 18(11): 1085-1097, 1999.

Figure 2: SpinBench interface.
A main window shows the pulse
sequence and simulation results.
Inspector windows allow plugin
selection and interactive tuning.

Figure 3: Simulated image from a
paramagnetic particle using a positive-
contrast SSFP pulse sequence. Inset:
experimental data confirms simulation.

Proc. Intl. Soc. Mag. Reson. Med. 15 (2007) 1652

