
Figure 1:  Block diagram of our software architecture.  Plugins are 
activated as desired to produce arbitrary waveforms or spin conditions; 
software controllers translate plugin state for input to a highly 
parallelized Bloch simulator, which computes values for subsequent 
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Introduction:  Pulse-sequence conceptualization, simulation, and hardware 
programming are usually distinct development stages, with similar code 
rewritten at each step.  Additionally, each hardware vendor maintains a 
unique, proprietary programming environment.  As a result, no freely 
available code library exists for standard pulse sequences, and sequences are 
not portable across vendors. We have developed a simple, extendable, freely 
available environment for rapid pulse sequence programming and 
simulation.  Our software, named �SpinBench� [1], combines computation 
speed with easy expandability by isolating the optimized simulator code 
from the plugin modules that provide additional functionality.  Using this 
software, many pulse sequences can be designed and simulated using the 
software�s built-in graphical tools.  Plugin APIs are provided to allow 
specialized pulse types or simulations of unusual physical phenomena.  
 

Methods:  Our software leverages the XCode software development 
environment available within Mac OS X, which provides high-level 
document operations including Load, Save, Cut, Paste, and Undo without 
explicit programming effort.  The software structure (Fig. 1) includes a 
multithreaded Bloch-equation simulator that uses all available processors for 
fast simulation.  To optimize simulation speed, this simulator block accepts 
only a minimum set of inputs (T1, T2, frequency, etc.).  A plugin 
architecture is used to specify higher-level structures including waveform 
types (trapezoid, spiral, slice-selection, etc.) or spin environments (motion, 
T2*, receiver phase, phantom characteristics, etc.).  Software controllers 
organize the active plugins and translate their state into inputs recognized by 
the Bloch simulator.  After simulation, outputs can be displayed as a graph, 
image, Fourier transform, or scatterplot.  Any floating-point Bloch input or 
plugin parameter can be specified as the independent axis or axes. 
     Significant time savings result from distilling parameters to the minimum 
set prior to the time-consuming Bloch simulation. The default simulation 
algorithm computes signal independently for each value over the desired 
range [2], with culling operators used to skip unnecessary iterations.  While 
other simulation techniques (including [3,4]) may be faster in certain cases, this approach places no assumptions on the experiment, and its 
independent measurements are extremely well suited to parallelization. 
     An external plugin-writing environment is provided for extensibility, consisting of a set of documented Objective-C APIs and a code library of 
existing plugins for use as a starting point.  Plugins typically require a minimum of coding, and may or may not have an associated inspector pane for 
graphical selection of parameter values.  A plugin may specify new RF pulses, gradient waveforms, unique physical conditions, or simulate a 
specific phantom.  If SpinBench does not have the appropriate plugins when a sequence file is loaded, a window notifies the user and directs them to 
the plugin�s author, if known.  APIs also exist for converting sequences and data to and from other file types; this capability may be used to directly 
produce code for use on major vendors� hardware.  In this way, SpinBench can be a platform-independent sequence-development tool. 
 

Results:  The program interface (Fig. 2) consists of a main window showing the current pulse sequence and 
simulator results, and inspector windows that allow parameter and plugin manipulation.  Fig. 2 plots a 
simulation of slice-selective SSFP signal for 3 different T2 values as a function of tip.  This simulation 
required 4 sec. on a 2.5-GHz Dual-PowerPC G5 system.  For comparison, the same simulation required 
more than 2 min. of computation time when implemented in Matlab.  Computation times generally range 
from instantaneous to minutes depending upon simulation complexity.  Several plugin modules have been 
created and used in our research, including the magnetic dipole signal arising from an iron particle in a 
rephased SSFP experiment as shown in Fig. 3.  This simulation was completed in 3 min., and the plugin 
consists of less than 60 lines of code, most of which is housekeeping code copied from an existing plugin. 

Discussion:  We have developed and demonstrated a flexible, vendor-independent MR signal simulator 
and pulse-programming environment.  Parallel code execution allows fast simulation without sacrificing 
accuracy, and plugin APIs allow arbitrary functionality.  The software, plugin APIs, and a library of 
sample plugins are available for download over the web [1]. 
     Further code optimization is possible to fully exploit parallelism and to avoid unnecessary 
computations.  We will also explore the sequence optimizations made possible by integrated spin 
simulation, including automated contrast optimization between selected tissues and automated k-space trajectory determination.  
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Figure 2:  SpinBench interface. 
A main window shows the pulse 
sequence and simulation results. 
Inspector windows allow plugin 
selection and interactive tuning. 

Figure 3:  Simulated image from a 
paramagnetic particle using a positive-
contrast SSFP pulse sequence.  Inset: 
experimental data confirms simulation. 
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