
 |G|max = 40 mT/m |G|max = 100 mT/m 
R=2µm 41.2    46.3    40.0 

15.1    20.1    40.0 
15.1    20.1    40.0 
36.8    50.6    23.7 

30.1    40.5    99.9 
10.4    15.4    100 
10.4    15.4    99.9 
28.6    42.1    42.3 

R=5µm 49.0    60.8    40.0 
49.0    60.8    40.0 
27.7    32.7    40.0 
45.0    64.8    19.7 

26.9    39.9    100 
26.9    39.9    100 
14.0    19.0    100 
08.9    57.9    98.1 

Table 1. Optimized four (δ, ∆, |G|) combinations, in 
(ms, ms, mT/m), for example R and |G|max settings.  

Figure 1.  Bias (left) and standard error (right) for each radius, against SNR 
at |G| = 0, for |G|max = 40 (top) and 100 (bottom) mT/m. 
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Introduction: This work studies the limits of measuring axon-diameters in vivo using diffusion MRI with current hardware.  We construct a simple 
idealized model of white-matter diffusion and outline a method to find rotationally invariant acquisition schemes that provide the best estimates of 
the model parameters.  The acquisition optimisation extends easily to other models, for example, with distributions of diameters as in [1].  
Simulation experiments using these acquisition schemes investigate the accuracy with which we can recover axon diameters.  The results provide 
limits on the axon diameters, and thus diameter distributions, we can expect to measure at various noise-levels and maximum gradient strengths. 

Methods: The model for the diffusion-weighted signal from a pulsed-gradient spin-echo sequence is A(δ, ∆, G) = f Ah(δ, ∆, G) + (1-f) Ar(δ, ∆, G), 
where G is the gradient vector, δ and ∆ are the gradient pulse length and separation, f is the volume fraction of the extra-cellular space; Ah is the 
signal from the extra-cellular space and Ar is that from the intra-cellular space.  The model is a stripped-down version of the CHARMED model [1].  
Axons are cylindrical, impermeable and all have the same radius R and direction n. For Ar, we use Van Gelderen�s model [2] for the signal from 
diffusion within cylinders. For Ah, we assume that displacements in the extra-cellular space are Gaussian with cylindrical symmetry about n with 
diffusivity d// in the fibre direction and d⊥ in perpendicular directions.  The full set of model parameters is p1 = f, p2 = R, p3 = d//, p4 = d⊥, and n. 

We assume no knowledge of the fibre orientation for in-vivo 
imaging, so the acquisition scheme should allow us to fit the 
model for any n.  Furthermore, the total acquisition time must be 
tolerable for live subjects.  We limit the number of acquisitions to 
120.  For orientation independence, we divide the measurements 
into M combinations of δ, ∆, and |G| in each of N gradient 
directions with NM=120.  For particular model parameters, we 
find the M combinations of δ, ∆, and |G| that minimize H = 
ΣaF(na)/a, where F(n) = Σi=1...4 Ci/pi

2 and Ci is the CRLB [3] of pi 
for direction n. The CRLB of pi is the i-th diagonal entry of J-1, 

where J has ij-th element ( )( )∑
=

− ∆∂∂∂∂
NM

k
kkkji pApA

1

2 ,, Gδσ , and σ is 

the standard deviation of the signal.  The noise level, σ, depends 
on T2 and the echo time TE, which we assume is the same for all 
measurements. We set TE = maxk(δk + ∆k) + K, where K is a 
constant depending on the length of the 90° pulse and readout, and 
σ ∝ exp(TE/T2); we take T2 = 70ms.  The CRLB Ci is a minimum 
bound on the variance of the fitted pi with the acquisition scheme 
(δk, ∆k, Gk), k = 1, ..., NM.  For orientation independence, we sum 
F(n) over a set of directions na, a=1...A. To construct the set, we 
select n1 at random, minimize H, then choose n2 that has largest 
F(n) over a large number of sample directions.  We iterate until the 
newly chosen n is already in the set; A is usually 3 or 4. We 
minimize H using a customized version of the Matlab genetic-algorithm tool.  For the optimization, we set f = 0.3, d// = 1.7×10-9 m2s-1, d⊥ = 2×10-10 
m2s-1.  We constrain ∆k - δk ≥ P180 = 5ms, which is the length of the 180° pulse. We optimize separately for each combination of R ∈ {1, 2, 5, 10, 
20} µm and |G|max ∈ {40, 70, 100, 200, 500} mT/m.  We take N = 30 and M = 4, which is the combination that usually gives lowest H. 
Experiments: We synthesize data from the model and add Rician noise.  We fit the model using a Levenberg-Marquardt algorithm.  We fix n to 
the true value and fit the four other parameters, initialized at their true values perturbed 
by Gaussian noise with standard deviation pi/5.  In each trial, we repeat the fitting from 
ten starting points and pick the result with the smallest residual error.  We run 50 trials 
for each combination of R and |G|max and compute the mean R� and standard deviation σR 
of the fitted radius and thus the bias (R-R�)/R and the standard error σR/R. 
Results: Table 1 lists typical examples of optimized acquisition schemes.  Figure 1 plots 
the bias and standard error against SNR for each R at |G|max = 40 and 100 mT/m.  Fitting 
accuracy increases with R, |G|max and SNR.  With |G|max = 40mT/m, R=10µm is the 
smallest radius we can estimate reliably at achievable SNR=50.  With |G|max = 100mT/m, 
we can measure R=5µm at SNR=50 and almost R=2µm; other results show we need 
|G|max close to 500mT/m to measure R=1µm (typical for brain) with this acquisition type. 
Discussion: We have outlined a new method for optimizing diffusion MRI acquisition 
for axon-diameter measurement in vivo.  Although not shown here, the optimization 
improves parameter estimates significantly over naive choices of combinations.  Experimental results provide upper bounds on the accuracy, since 
we tune the acquisitions specifically to measure each R, the model is an idealized extreme and we fix n during fitting.  However, the results give 
insight into the regions of axon-diameter distributions that we can fit reliably.  Reducing P180 may increase accuracy for smaller R, as will 
incorporating prior knowledge about fibre orientation.  Similar optimization can provide acquisitions for fitting diameter distributions, as in [1]. 
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