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Introduction: Despite diffusion weighted MRI (DW-MRI) being firmly established as clinical modality, the understanding of its biophysical foundation remains 
incomplete. Furthermore, being sensitive to diffusion barriers and restrictions on a micrometer scale, the potential of DW-MRI for in vivo measurements of 
cytoarchitectural parameters is still not fully realized. In order to succeed with this goal one needs an appropriate model and a reliable way of testing and validating it. 
The criteria on which such a model should be judged include its biophysical justification, its ability to describe experimental data parsimoniously, and independent 
validation from other modalities. Computer simulations can be a valuable tool to assist in the development of new models, since they allow individual aspects and 
assumptions of candidate models to be tested independently [1]. Here we present a simulation framework capable of simulating the signal decay in a narrow pulse 
Stejskal-Tanner spin echo experiment for arbitrary geometries including entire digital neurons, and as an example application, we use it to test a promising new model 
with the potential of determining mean dendrite radii.    
Theory: In order to simulate the signal decay due to diffusion inside structures bounded by impermeable barriers it is necessary to keep track of the transverse 
magnetization x yM M iM+ = + over time, and one way of doing this is to use the Bloch-Torrey equation with Neumann boundary conditions.  Neglecting T2 relaxation, 
this equation reduces to the diffusion equation in the time interval ∆ between the two gradient pulses in a spin echo Stejskal-Tanner experiment. Thus, if we assume the 
narrow pulse approximation to be satisfied, the temporal evolution of M +  can be simulated by applying the gradients instantaneously and then solve the diffusion 
equation in the intervening time. There are several ways of solving the diffusion equation numerically; in this work, a simple forward time centered space finite 
difference method has been chosen [2]. This method is based on a discretization of space and time such that spatial locations are restricted to grid points and advances 
in time are made stepwise. In this discretization, the diffusion equation becomes an algebraic equation linking the magnetization at a given grid point and time step to 
the magnetization at the same grid point and its six nearest neighbours at the previous time step. Reflecting boundary conditions are implemented by a slight local 
modification of the algebraic equation excluding grid points outside the structure. The simulation framework consists of two programs, one that handles the position and 
neighbor information of all the grid points inside the structure and another one that does the actual simulation based on the output from the first.  This division is crucial 
in terms of memory use and execution time. To model the signal decay for a neuron, we use a recently proposed model for diffusion in brain tissue [3],   where the 
neuron is imagined as being comprised of a distribution ( , )f θ ϕ  of long cylinders. The signal decay for each of these cylinders is then approximated by the expression 

2 2 2 2
1( , ) (2 (2 sin ) / 2 sin ) exp( 4 cos )E J Rq Rq D qπ θ π θ π θ∆ = − ∆q [7]; here 1J  is the Bessel function of order 1, R  is the cylinder radius, D is the diffusion constant,   ∆  

is the diffusion time (intergradient spacing), andθ is the angle between the gradients and the cylinder axis. This is an extension of the model presented in [3], such that 
the transverse part of the diffusion in the cylinder is described exactly in the long time limit 2D R∆ >> .  Since the diffusion length is relatively large compared to the 
average diameter of a dendrite for normal experimental diffusion times, this approximation is quite good. By integrating the product of these two functions (E and f) 
over the sphere and making a second order ( 2l = ) expansion of ( , )f θ ϕ  in spherical harmonics ( , )lmY θ ϕ we end up with       
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where 0E is the signal at 0q≡ =q , lmf are the expansion coefficients,  ( , )q qθ ϕ are the spherical polar angles of q, and 1 1( , , )F a b z  is the confluent hypergeometric 
function. The expression for 2G  has the same structure as 0G and is omitted here for brevity. Since ( , )f θ ϕ  is a real function the coefficients are constrained 
by * ( 1)m

lm l mf f −= − giving Eq. 1 a total of 8 free parameters. 
Materials and methods: The digital neuron part of the simulation framework is based on the SWC 
format [4], which specifies the neuron in terms of a large collection of truncated cones. So far we 
have worked with digital versions of pyramidal neurons from the pre-frontal cortex of Macaque 
monkeys, obtained with kind permission from [5]; see Fig. 1 for an example.  The simulations were 
carried out on a state-of-the-art grid computer consisting of 23 machines each with Intel 2.8 GHz 
Xeon dual processors. For a typical neuron simulation with 710 grid points, a grid spacing of 
0.075 µm , 410 time steps and 96 gradients, the execution time ranged from 5 to 6 hours. In each 
simulation we used 21µm /msD = , 5ms∆ = and 96 gradients with a magnitude ranging from 0.15 to 
0.4 1

µm−  in a total of 8 steps using 12 directions from a 12 point spherical 5 design for each [6].   
These data sets were then fitted to the model in Eq. 1 using nonlinear least squares, in order to 
evaluate average dendrite radius and bulk diffusivity. 
Results: The simulation framework has been tested against various simple geometries including 
cylinders, spheres, boxes, parallel planes and unbounded space, and in each case excellent agreement 

with the analytical solutions (see e.g. [7]) was 
achieved.  Furthermore, simulations with four 
different digital neurons has resulted in good 
agreement with Eq. 1, see Table 1 for details; here R is the volume weighted average radius of the truncated 
cones, whereas Rsim and Dsim  is the radius and diffusion constant determined from the fit to the simulation data. 
There is a small tendency to overestimate the radius, and underestimate D. 
 Discussion and conclusion: We have presented a simulation framework with great potential as a testing ground 
for new diffusion models as well as a way of finding optimal parameter values for existing models. Furthermore 
a promising new model with the potential of obtaining average dendrite radii was fitted to the simulation data 

with relatively good agreement. The small discrepancy in the estimation of dendrite radius is presumably caused by the large soma radius which is not included in the 
calculation of R , and curvature of the dendrites may also influence this estimate. These results provide strong support to the idea of describing diffusion in neurons in 
terms of collections of long cylinders, an approach used also in [3]. Such a model and the extension presented here may be used in the analysis of high-resolution 
diffusion data, which is the focus of our current efforts. 
References: [1] S.N. Hwang et al, Magn. Reson. Med. 50 373-382; [2] C.A.J. Fletcher, Computational techniques for fluid dynamics, vol. 1; [3] S.N. Jespersen et al., 
appearing in NeuroImage; [4] Cannon et al., J. Neurosci. Methods 84 49-54; [5] The Computational Neurobiology and Imaging Center, Mt. Sinai School of Medicine; 
[6] R.H. Hardian et al. Discrete Comput. Geom. 15 429-441; [7] P.T. Callaghan J. Magn. Reson. 113 53-59.  

 
Fig. 1: An example of a digital pyramidal neuron obtained 
from [5].  R /

µm  
simR / 
µm  

si mD / 
2

µm /ms  
Neuron 1 0.53 0.55 ± 0.05 0.91 ± 1.4 
Neuron 2 0.43 0.63 ± 0.05 0.96 ± 1.4 
Neuron 3 0.58 0.71 ± 0.06 0.91 ± 1.6 
Neuron 4 0.63 0.72 ± 0.05 2.0 ± 7.6 
Table 1: Fitting results for the simulation data 
of four different macaque  pyramidal neurons. 
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