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Introduction: 
Statistical imaging of random H2O motions using MRI has followed two mathematical paradigms: diffusion-weighting 
and q-space analyses.  In diffusion-weighted analyses, the ensemble of molecules is assumed to evolve with a (not 
necessarily isotropic) Gaussian probability density/point spread function (PSF)�or a mixture of such densities�and the 
data analysis is oriented towards determining the parameters of the PSF (e.g., the apparent diffusion tensor).  In q-space 
analyses, the transport is allowed to have a quite general PSF; as a result, much more data is required to reconstruct the 
PSF.  The two analytical paradigms come from two different experimental communities with little overlap, since 
diffusion-weighted imaging is practicable in humans, whereas accurate q-space imaging is not.  Our goal is to generalize 
the analysis of [1], which relates q-space and diffusion weighting. 

Analysis: 
We denote by M(x,t)  the transverse magnetization and by � M (q,t) its spatial Fourier transform.  In the absence of 
magnetic field gradients, we model the transport of magnetization from its initial state M(x,0) to time t  by 
convolution (*)  with an unknown time-dependent PSF P(x,t): 

M(x,0)
t

⎯ → ⎯ M (x,0)∗ P(x,t) ⇒ � M (q,0)
t

⎯ → ⎯ � M (q,0) ⋅ � P (q,t) ⇒
∂ � M (q,t)

∂t
= ∂ � P (q,t)/∂t

� P (q,t)
⋅ � M (q,t) 

Define � P (q,t) = e−u(q,t ) (for diffusion, u(q,t) = q ⋅ D ⋅ q t , where D  is the diffusion tensor to be estimated), so that 
� P (q,t)−1 ⋅∂ � P (q,t)/∂t = −∂u(q,t)/∂t ≡ −ut (q,t) .  With gradients, dq /dt = γG(t) , and the magnetization transport model is: 

∂M (x,t)
dt

= −i
dq
dt

⋅ x M (x,t) + ℑq↔x
−1 −ut (q,t) � M (q,t)[ ] ⇒ ∂ � M (q,t)

∂t
− dq

dt
⋅ ∇q

� M (q,t) = −ut (q,t) � M (q,t) 

The last equation is a first order PDE in (q,t) space, which can be solved using the method of characteristics: 

� M q0 − q(t),t( )= e
− ut (q(τ ),τ ) dτ

0

t

∫ � M (q0,0), where q0  is an arbitrary vector in q-space.  For imaging purposes, the trajectory 

q(t)  is rewound to q = 0  at some time T before the k-space readout begins.  Assuming that the k-space region covered is 
small enough not to induce significant diffusive effects itself, then we find that the attenuation of the image is given by 

E = e
− ut (q(t),t) dt

0

T

∫  or − ln(E) = ut (q(t),t)dt = − � P (q(t),t)−1 ⋅∂ � P q(t),t( ) ∂t[ ]dt
0

T

∫0

T

∫ ; that is, a general trajectory through qt-

space gives a tomographic result about the time evolution of the Fourier transform of the PSF for water transport. 

Discussion: qt-Space Tomography: 

In the diffusion limit, ln(E) = − q(t) ⋅ D ⋅ q
0

T

∫ (t)dt , which is the basis for estimating the diffusion tensor D by using 

different paths through qt-space.  In the q-space PGSE experiment, T = ∆and q(t) = const  (since the pulsed gradient 

duration δ is assumed small), yielding E(q) = e
− ut (q,t ) dt

0

∆
∫ = e−u(q,∆) = � P (q,∆), the usual q-space imaging attenuation.  If δ 

is not small, then q(t) ≠ const  and the relationship between E  and � P (q,t)  is more complicated and involves all 
intermediate times 0 ≤ t ≤ ∆ .  If enough different trajectories through qt-space were traversed, and a parameterized 
mathematical model for � P (q,t)  adopted (cf. [2,3]), then the parameters of � P (q,t)  could be estimated from the − ln(E)  
measurements.  Such a technique may allow a systematic (if approximate) extension of q-space imaging to humans, where 
δ cannot be small.  Various extensions of this theory are possible, such as allowing 
for transport effects during excitation and for multiple coherent pathways through qt-
space created by multiple RF pulses [4].  
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