Unified Mathematical Model of q-space and diffusion tensor imaging
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Introduction:

Statistical imaging of random H,O motions using MRI has followed two mathematical paradigms: diffusion-weighting
and g-space analyses. In diffusion-weighted analyses, the ensemble of molecules is assumed to evolve with a (not
necessarily isotropic) Gaussian probability density/point spread function (PSF)—or a mixture of such densities—and the
data analysis is oriented towards determining the parameters of the PSF (e.g., the apparent diffusion tensor). In g-space
analyses, the transport is allowed to have a quite general PSF; as a result, much more data is required to reconstruct the
PSF. The two analytical paradigms come from two different experimental communities with little overlap, since
diffusion-weighted imaging is practicable in humans, whereas accurate g-space imaging is not. Our goal is to generalize
the analysis of [1], which relates g-space and diffusion weighting.

Analysis:

We denote by M(x,?) the transverse magnetization and by M (q,?) its spatial Fourier transform. In the absence of
magnetic field gradients, we model the transport of magnetization from its initial state M (x,0) to time ¢ by
convolution (*) with an unknown time-dependent PSF P(x,?):
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Define I3(q,t) =" (for diffusion, u(q,t)=q-D-q1, where D is the diffusion tensor to be estimated), so that

IE’(q,t)’l -3f’(q,t)/ ok =—au(q,t)/k =—u,(q,t). With gradients, dq/dt = #G(t), and the magnetization transport model is:
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The last equation is a first order PDE in (q,#) space, which can be solved using the method of characteristics:
M(qy—q(t).t)=e
q(t) is rewound to q =0 at some time 7 before the k-space readout begins. Assuming that the k-space region covered is

small enough not to induce significant diffusive effects itself, then we find that the attenuation of the image is given by
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f‘)u M(q,,0), where q, is an arbitrary vector in gq-space. For imaging purposes, the trajectory
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E= or —In(E)= jo u,(q(t),t)dt =—j0 [P(q(t),t)_l -8P(q(t),t)/z9t]dt; that is, a general trajectory through gt-
space gives a tomographic result about the time evolution of the Fourier transform of the PSF for water transport.

Discussion: qt-Space Tomography:

T
In the diffusion limit, In(E) = —J-O q(t)-D-q(¢)dt, which is the basis for estimating the diffusion tensor D by using
different paths through g¢-space. In the g-space PGSE experiment, T =Aand q(¢) = const (since the pulsed gradient
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duration J is assumed small), yielding E(q)=e = f’(q,A), the usual g-space imaging attenuation. If &

is not small, then q(¢)# const and the relationship between E and f’(q,t) is more complicated and involves all
intermediate times 0<¢<A. If enough different trajectories through g¢-space were traversed, and a parameterized
mathematical model for f’(q,t) adopted (cf. [2,3]), then the parameters of 13(q,t) could be estimated from the —In(E)
measurements. Such a technique may allow a systematic (if approximate) extension of g-space imaging to humans, where
d cannot be small. Various extensions of this theory are possible, such as allowing Highest

for transport effects during excitation and for multiple coherent pathways through gz- trajectory

space created by multiple RF pulses [4]. Possible trajectories g I::esnu?r: path
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