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Introduction

Diffusion tensor imaging (DTI) provides contrasts sensitive to tissue orientation and micro-architecture. A basic premise of DTI is that the
tensor formalism (e.g., assumption of Gaussian diffusion) meaningfully represents diffusion processes, and thus the derived contrasts are relevant.
Yet, not all tensors represent physically possible processes (e.g., those with negative eigenvalues); typical log-linear mean squared error methods can
result in these non-physical solutions. Various nonlinear tensor estimation frameworks have been developed to prevent these problems [1-3], while
regularization and robust tensor estimation methods employ spatial correlations to lessen the effects of noise [4-5]. Despite the emergence of new
methods, little evidence has been presented to provide equivalent experimental comparisons or enable well-informed selection of the appropriate
tensor estimation method for a particular task.

This study investigates the impact of tensor estimation method on derived contrasts as a function of SNR, presents a framework to evaluate
methods, and establishes an open web portal to enable collaborative evaluation of methods. Tensor estimation accuracy as a function of SNR is
mapped through multiple simulations, and trends in bias and variability are exposed. These data provide guidance as to the level of uncertainty
introduced between studies conducted with differing tensor estimation schemes and/or SNR levels.

Methods

A high resolution, high SNR dataset with 15 repetitions of 30 diffusion weighted (DW) and one scanner average of 5 minimally weighted
(b0) acquisition at 1.5T was used as ground truth to assess the effects tensor estimation method. Simulations were performed with modeled noise as
previously described [6,7]. An axial slice at the level of the lateral ventricles was selected to be representative of human brain anatomy (see inlays
Fig. 1). SNR is reported with respect to the b0.

Four methods of tensor estimation were compared to demonstrate the practical consequences of applying a few of the many widely
available choices. First, we directly applied the Stejskal-Tanner tensor model [8] to the estimation of tensor coefficients (LL-MMSE). Next, two ad
hoc methods for reducing the impact of negative eigenvalues were evaluated: (1) we replaced any DW values that were greater than the b0 value with
the b0 value prior to LL-MMSE tensor estimation, denoted LL-MMSE (clip DWI), and (2) we reduced the impact of non-physical solutions by
replacing negative eigenvalues with zero-values, denoted as LL-MMSE (clip eigenvalues). Finally, we evaluated the non-linear fitting method
provided with the AFNI toolkit (National Institutes of Health, Bethesda, MD) [2]. Analyses were performed with a combination of custom Matlab
(MathWorks, Natick, MA) scripts and AFNI tools.

For each SNR and method combination, the bias, variability, and root mean square (RMS) error for fractional anisotropy (FA) and mean
diffusivity (MD) were computed. For comparison, the average RMS errors for tensors estimated from single in vivo acquisitions are shown. To
provide a single quantitative measure of the differences between tensor estimation methods, we computed the average RMS error over 25 dB to 40
dB. This interval was chosen to correspond to typical achievable range of SNR in an in vivo clinical DTT setting. To enable direct comparisons at
arbitrary SNR, a sigmoid function was fit to the FA and MD RMS errors over the same SNR levels (functional fits are reported online).

Results and Discussion

The low SNR limiting mean values of FA and MD depended on tensor estimation method (Fig. 1). At very low SNR (<0 dB), there was
little contribution from the underlying ground truth data on the estimated contrasts. At low SNR (0-20 dB), the bias in underlying contrasts rapidly
increased with decreasing SNR, while the rate of change was much reduced at moderate SNR (20-40 dB). At high SNR (>40 dB), there was little
change with SNR or dependence on estimation method. The positive definite method showed reduced bias in FA (Fig. 1A), but increased bias in MD
(Fig. 1B). In terms of RMS error, the positive definite method out performed the three LL-MMSE methods for estimating FA, but showed reduced
performance in MD estimation (Table 1). The modified LL-MMSE algorithms demonstrated improvements in all FA measures over the LL-MMSE
method and nominal MD improvements.

Many factors influence tensor estimation accuracy and bias, including diffusion weighting schemes, number of b0 acquisitions, spatially
varying SNR, and artifact. This simple framework provides a clinically relevant and easy to interpret metric to guide selection of tensor estimation
procedure based on the tradeoffs between bias, variability, and CPU time.
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(including bias, variability, and RMS error) are Table 1. Mean Tensor Estimation Error (25 to 40 dB) (FA: [FA]x1000. MD: mm®/s x 1000)

. . . RMS Error Bias Variability CPU Time
presented on the project webpage, which is  ggtimation Method FA _MD __FA MD ___FA __ MD _Relative
accessible through =7 74075F 646 458 386 848 508 448 1
http://iacl.ece.jhu.edu/~bennett/.  Submissions [, _AMSE (clip DWI) 64.5 457 385 -845 50.8 447 1
from the community of evaluations of other | MMSE (clip eigenvalues) 645  45.8 386 -845 50.8 448 1
algorithms are encouraged and will be  Ppositive Definite MMSE 61.2 468 357 -1522 488 440 84

incorporated  into  the
community resource.
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