
 

Table 1. Mean Tensor Estimation Error (25 to 40 dB) (FA: [FA]x1000. MD: mm2/s x 1000) 
 RMS Error  Bias  Variability  CPU Time 
Estimation Method FA MD FA MD FA MD Relative 
LL-MMSE   64.6 45.8 38.6 -8.48 50.8 44.8 1 
LL-MMSE (clip DWI) 64.5 45.7 38.5 -8.45 50.8 44.7 1 
LL-MMSE (clip eigenvalues) 64.5 45.8 38.6 -8.45 50.8 44.8 1 
Positive Definite MMSE 61.2 46.8 35.7 -15.22 48.8 44.0 8.4 
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Introduction 
Diffusion tensor imaging (DTI) provides contrasts sensitive to tissue orientation and micro-architecture. A basic premise of DTI is that the 

tensor formalism (e.g., assumption of Gaussian diffusion) meaningfully represents diffusion processes, and thus the derived contrasts are relevant. 
Yet, not all tensors represent physically possible processes (e.g., those with negative eigenvalues); typical log-linear mean squared error methods can 
result in these non-physical solutions. Various nonlinear tensor estimation frameworks have been developed to prevent these problems [1-3], while 
regularization and robust tensor estimation methods employ spatial correlations to lessen the effects of noise [4-5]. Despite the emergence of new 
methods, little evidence has been presented to provide equivalent experimental comparisons or enable well-informed selection of the appropriate 
tensor estimation method for a particular task. 

This study investigates the impact of tensor estimation method on derived contrasts as a function of SNR, presents a framework to evaluate 
methods, and establishes an open web portal to enable collaborative evaluation of methods. Tensor estimation accuracy as a function of SNR is 
mapped through multiple simulations, and trends in bias and variability are exposed. These data provide guidance as to the level of uncertainty 
introduced between studies conducted with differing tensor estimation schemes and/or SNR levels.  
Methods 
 A high resolution, high SNR dataset with 15 repetitions of 30 diffusion weighted (DW) and one scanner average of 5 minimally weighted 
(b0) acquisition at 1.5T was used as ground truth to assess the effects tensor estimation method. Simulations were performed with modeled noise as 
previously described [6,7]. An axial slice at the level of the lateral ventricles was selected to be representative of human brain anatomy (see inlays 
Fig. 1). SNR is reported with respect to the b0.  

Four methods of tensor estimation were compared to demonstrate the practical consequences of applying a few of the many widely 
available choices. First, we directly applied the Stejskal-Tanner tensor model [8] to the estimation of tensor coefficients (LL-MMSE). Next, two ad 
hoc methods for reducing the impact of negative eigenvalues were evaluated: (1) we replaced any DW values that were greater than the b0 value with 
the b0 value prior to LL-MMSE tensor estimation, denoted LL-MMSE (clip DWI), and (2) we reduced the impact of non-physical solutions by 
replacing negative eigenvalues with zero-values, denoted as LL-MMSE (clip eigenvalues). Finally, we evaluated the non-linear fitting method 
provided with the AFNI toolkit (National Institutes of Health, Bethesda, MD) [2]. Analyses were performed with a combination of custom Matlab 
(MathWorks, Natick, MA) scripts and AFNI tools. 
 For each SNR and method combination, the bias, variability, and root mean square (RMS) error for fractional anisotropy (FA) and mean 
diffusivity (MD) were computed. For comparison, the average RMS errors for tensors estimated from single in vivo acquisitions are shown. To 
provide a single quantitative measure of the differences between tensor estimation methods, we computed the average RMS error over 25 dB to 40 
dB. This interval was chosen to correspond to typical achievable range of SNR in an in vivo clinical DTI setting. To enable direct comparisons at 
arbitrary SNR, a sigmoid function was fit to the FA and MD RMS errors over the same SNR levels (functional fits are reported online).  
Results and Discussion  
 The low SNR limiting mean values of FA and MD depended on tensor estimation method (Fig. 1). At very low SNR (<0 dB), there was 
little contribution from the underlying ground truth data on the estimated contrasts. At low SNR (0-20 dB), the bias in underlying contrasts rapidly 
increased with decreasing SNR, while the rate of change was much reduced at moderate SNR (20-40 dB). At high SNR (>40 dB), there was little 
change with SNR or dependence on estimation method. The positive definite method showed reduced bias in FA (Fig. 1A), but increased bias in MD 
(Fig. 1B). In terms of RMS error, the positive definite method out performed the three LL-MMSE methods for estimating FA, but showed reduced 
performance in MD estimation (Table 1). The modified LL-MMSE algorithms demonstrated improvements in all FA measures over the LL-MMSE 
method and nominal MD improvements. 
 Many factors influence tensor estimation accuracy and bias, including diffusion weighting schemes, number of b0 acquisitions, spatially 
varying SNR, and artifact. This simple framework provides a clinically relevant and easy to interpret metric to guide selection of tensor estimation 
procedure based on the tradeoffs between bias, variability, and CPU time. 
  Data, source code, and detailed results 
(including bias, variability, and RMS error) are 
presented on the project webpage, which is 
accessible through 
http://iacl.ece.jhu.edu/~bennett/. Submissions 
from the community of evaluations of other 
algorithms are encouraged and will be 
incorporated into the 
community resource.  
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