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Introduction Reconstruction of diffusion tensors from multi-shot & multi-coil diffusion tensor imaging data is generally a two step procedure : 1) reconstruction of 
individual diffusion weighted images using non-linear phase correction and SENSE reconstruction [1],[2] ; 2) estimation of tensors from the diffusion weighted images 
using multivariate regression. However, in the case of rotational motion between the shots, each interleaf experiences a different diffusion encoding. This makes it 
impossible to reconstruct each diffusion weighted image individually. In this study, we propose a single-step tensor estimation scheme that uses a non-linear conjugate 
gradient (NLCG) algorithm to overcome this problem. 
Materials and Methods For a multi-shot & multi-coil DTI acquisition, the 
k-space signal is given by: 
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where γ stands for the coil number, δ for diffusion weighting direction 
number, ξ for interleaf number, κ for k-space point and ρ for image space 
point. m(rρ) is the non-diffusion weighted image that can be obtained with 
the conventional SENSE reconstruction and is assumed to be known. 
Because of the random nonlinear phase and altered sensitivity exposure due 
to motion, each interleaf is assigned a different set of modified coil 
sensitivity profiles [3]. For such a situation, the diffusion encoding (bδ,ξ) 
has to be different for each interleaf as well. In particular, when there is 
rotational motion, bδ,ξ is given by  bδ,ξ = Rδ,ξ bδ Rδ,ξ 

T, where Rδ,ξ is the 
rotation matrix of ξth interleaf with respect to a template. In the equation 
above, we assume that the k-space data dγ,δ has already been corrected for 
translational motion by applying a linear phase. The k-space trajectories kκ,ξ 
are also assumed to have been counter-rotated accordingly to account for 
rotation. 
The aim of the NLCG algorithm is to find the D(rρ) that minimizes a cost function f. For this purpose, we define the cost function as the sum-of-squares of the 
differences between the measured and calculated k-space values over all coils, diffusion encoding directions, interleaves and k-space points: 
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To find the [D(rρ)]i,j that minimizes this cost function, we employed the NLCG algorithm using Polak-Ribiere and Newton-Raphson line search [4]. In order to use this 
algorithm efficiently, we need the first derivative and an approximation to the second derivative of the cost function given above with respect to the tensor elements 
[D(rρ)]i,j. It is required that these first and second derivatives are obtained for all image points and tensor elements. This requires the summation above to be performed 
6 x nρ times. This calculation can be carried out more efficiently by approximating the summation over κ using inverse gridding and FFT. With this technique, the first 
and second derivatives of the cost function with respect to the element (i1,j1) of the diffusion tensor at location rρ1 becomes : 
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A flowchart of our algorithm is given in Figure 1. Following the convention in [1], the FFT & 
Inverse Gridding and Forward Gridding & IFFT operations are denoted by FT2 and FT1 
respectively. In order to test our method, in-vivo experiments were carried out with 
TR/TE=3000/61 ms, 6 diffusion gradient directions [(1 1 0)T,(1 0 1)T, (0 1 -1)T, (-1 1 0)T, (0 1 1)T, 
(1 0 -1)T], NEX=2, matrix size = 128x128 and 8 interleaves. A spiral-in navigator was used to 
measure the amount of motion for each interleaf. The performance of NLCG algorithm was 
evaluated for the cases with and without subject motion. 
Results and Discussion Figure 2 shows the FA maps obtained by NLCG. It can be seen that the 
visualization of white matter pathways is successful. The moderate noise in the images 
reconstructed with NLCG is a result of the sensitivity of CG methods to noisy data. This can be 
corrected with appropriate preconditioning ([1],[4]) but was not explored in this work. The rigid 
head motion related artifacts are significantly removed by the proposed motion correction scheme. 
Conclusion A one-step method for combined motion correction and tensor estimation using Non-
linear Conjugate Gradient is proposed. The current method performs similar to the conventional 
two step tensor estimation when there is no motion. The consecutive FFT, inverse gridding, 
forward gridding and IFFT operations applied here are similar to the algorithm used in generalized 
SENSE reconstruction for arbitrary trajectories [4]. Thus, the reconstruction time per image is mainly determined by the forward and inverse gridding steps and is 
comparable to that of non-linear phase correction given in [2]. Further speed-up is possible by combining the forward and inverse gridding operations and using the 
transfer function approach [5].  
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Figure 2 � In-vivo results showing the FA maps reconstructed 
with NLCG.  The FA map reconstructed using NLCG in case of 
no subject motion (left) demonstrates the successful 
visualization of white matter pathways. In the presence of 
motion, the FA map reconstructed with SENSE and without 
motion correction (middle) shows significant motion artifacts 
compared to the motion-corrected image using NLCG (right). 

Figure 1 � The Nonlinear Conjugate Gradient Algorithm for Diffusion Tensor 
Estimation. The main algorithm is shown with the flow diagram on the top left 
corner. Each channel corresponds to a specific interleaf, coil and diffusion encoding 
direction. An enlarged version of the individual blocks is shown at the bottom. 
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