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Introduction:

Complicated intra-voxel fiber structures such as crossing or branching fiber bundles are one reason for non-Gaussian diffusion, which cannot be
correctly described by second order diffusion tensors (DT), see for example [1]. To overcome this problem higher order diffusion tensor models [2],
[3] were proposed, that require HARDI measurements with a large number of encoding directions. The increase in independent tensor elements leads
to an increase in the rank of the estimation-matrix and its respective condition number for the tensor evaluation. In this work we present a comparison
of established gradient encoding schemes (GES) for the higher order tensor (HOT) estimation. The focus here is on the icosahedral and force-
minimizing encoding schemes [4], [7]. We show that not all of them are equally well suited for HOT evaluations.

Methods:

Our analysis examines GES for the evaluation of two HOT models known from literature, the generalized diffusion tensor by Oezarslan and Mareci
[3] and the tensor hierarchy introduced by Liu et al. [2]. The first tensor model is limited to reconstructing symmetric fiber constellations and does not
allow an immediate reconstruction of their fiber orientations [5]. In contrast to this model the tensor hierarchy is able to derive fiber orientations
directly and can represent asymmetric fiber constellations due to the use of odd order tensors, which are solely determined from the imaginary part of
the complex measured signal. For both models the tensor can be estimated (for each voxel) by solving an equation system of the form: D = B''Y.
Here D is a vector comprising all tensor elements, Y stores the logarithmic signal (log(S/Sy)) and B is the so-called estimation or B-matrix, which
contains the information on the encoding scheme and the diffusion weighting. In this evaluation of GES we focus on the comparison of the condition
numbers of the corresponding B-matrices, which give an upper boundary for the error propagation in the tensor estimation [8]. This measure and its
rotational variance are commonly used to compare different encoding schemes [6], [8]. The force-minimizing scheme was evaluated 100 times for
each number of encoding directions to obtain reliable estimates of the the mean condition number and its standard deviation.

Results:

Both models were evaluated for a (maximal) tensor order of six. In Fig. 1 the 505000 Sice
results for the evaluation for the maximal tensor order four are exemplarily \M‘
shown. In our evaluations, we observed, that the HOT estimation stabilizes (in 500000
terms of the condition number variance) in general with an increase in encoding
directions. This stabilization is particularly salient in the force-minimizing
schemes for single HOT [3] estimation, which stabilize abruptly when the number
of encoding directions is at least twice the number of independent tensor elements
(see Fig. 1 (bottom); here this is 15). Figure 1 (top) illustrates the rotational
dependence of the icosahedral GES as error-bars and (connected) points. It can
also be seen that for these schemes the condition number does not necessarily
decrease with an increase in encoding directions. There is a continuous decrease 475000
in the schemes resulting from even order icosahedral triangulations (21, 81, 321). 70000 ‘ ‘ ‘ ‘
The reason why other icosahedral schemes do not improve in the same way needs 21 0 46 50 8 8 100 126 321
to be further investigated. One explanation could be the existence of different sub- Number of Encoding Directions

families of the icosahedral schemes (for example even- and odd-order 8
triangulations) that stabilize at individual rates. It was also observed that the ; T
icosahedral 'bucky-ball' scheme with 30 directions could not estimate the single jL
HOT model [3] for order six, because B did not reach the full rank of 28, i.e. a
large number of gradient directions alone does not guarantee that the HOT models
can be applied. Figure 1 (top) illustrates clearly that the force-minimizing GES
are favorable for evaluations of HOT hierarchies [2], because they stabilize
considerably faster than the icosahedral schemes. When the number of encoding
directions is sufficiently high the force-minimizing schemes will outperform the
icosahedral ones for the single HOT model [3] as well.

Discussion:

The HOT hierarchy [2] has a more complex B-matrix than the single HOT model
[3], which explains the generally higher condition numbers for the hierarchy.
Regularization methods could be used for solving the linear systems for the
hierarchical model [2] more reliably especially in the presence of noise. It was
already shown with an example that the reconstruction of complicated fiber —Figure 1: Both charts illustrate the behaviour of the condition
structures is possible [2]. In simple cases the hierarchy reduces to the standard DT ~ numbers for the HOT B-matrices corresponding to a (maximal)
with an associated low condition number of the B-matrix. tensor order of four. In the top chart the results for the HOT
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‘D Icosa | 4.9509 | 6.8550 3.8172 | 3.8376 3.8151 3.7719 3.8115 | 3.7668
‘E Force 2.6E+6 3.8332 | 3.7760 3.7593 | 3.7528 3.7536
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