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Abstract - In DT-MRI processing a 2nd order tensor has been commonly used to approximate the diffusivity profile at each lattice 
point of the 2D or 3D image. These tensors are symmetric positive definite matrices and the appropriate handling of this property 
increases significantly the complexity and the execution times of the algorithms. In this paper we present a novel parameterization of 
the diffusivity profile. Using this parameterization the positive definite property of the diffusivity is guaranteed without the need of 
any further computation. This parameterization can also be used for higher order approximations; we present 4, 6 and 8th order tensor 
approximations. Furthermore, we present an efficient framework for computing distances and geodesics on the space of the 
coefficients of our proposed diffusivity function. We validate our method using real diffusion weighted MR data from excised, 
perfusion-fixed rat optic chiasm (fig. 1).  
Motivation � The standard diffusivity function d(g)=gDgT gives a 2nd order approximation of the true diffusivity. Higher order 

approximations can be obtained by generalizing the diffusivity function∑ kji
kji Dggg ,,321 . However there is no proposed framework 

able to handle computations of higher order tensors preserving the positive definite property. 
Proposed Framework � In our work we employ the diffusivity function d(g)=exp(gEgT), where g is a unit vector. This function is 

positive definite for any symmetric matrix E. Similarly in the higher order case we employ the function )exp( ,,321∑ kji
kji Eggg . In 

order to make computations in the space of the proposed diffusivity functions we use the L-2 distance between d1(g)=exp(gE1g
T) and 

d2(g)=exp(gE2g
T) given by ( )∫ −= 2

2121
2 ))(log())(log(),( gdgddist EE . We computed analytically the integral over all unit 

vectors g for the case of 2, 4, 6 and 8th order approximations and it can be expressed as a sum of powers of the elements of E1 and E2 
which can be implemented very efficiently. Using this distance measure we prove that the mean element can be computed as 
Euclidean mean and geodesics can be computed as in the Euclidean space. The coefficients E can be estimated from diffusion 
weighted images by following a functional minimization method as in the case of standard diffusivity function. Processing of the 
estimated field of coefficients E can be done efficiently by using standard vector field processing methods (fig. 2,3) . Finally, we can 
compute the distance from the closest isotropic case which has similar behavior to the standard fractional anisotropy map (fig. 4).  
Experimental Results � We estimated 4, 6 & 8th order approximations from a dataset acquired from a rat optic-chiasm (fig. 1) and 
then we computed the mean and the principal components (fig. 2). We present also distance map from the isotropy (fig. 4) and a 
comparison of our proposed function with the standard diffusivity function (fig. 5). For the case of higher order approximations we 
compute and plot the probability profiles instead of the diffusivity profiles. Figures are explained with more details in their captions.  

   MEAN         6 OF THE PRINCIPAL COMPONENTS 

Figure 2: Example of statistical analysis of the data from 
fig.1 using our framework. Using Euclidean mean and the 
standard PCA we can compute the mean and the principal 
components of the data. Here probability profiles plotted. 

  INTERPOLATION 

Figure 3: Interpolation 
example using our method. 
Given the first and third 
profile we compute the 
interpolant in the center. 

 

Figure 4: Comparison between 
the FA map (left) and the distance 
from the closest isotropic case 
(center) for the same dataset. On 
the right we plot the distance 
from the isotropy as a function of 
the FA using the same dataset.  

 
Figure 1: Plot of the estimated probability profiles 
using 4th order approximations of a dataset acquired 
from excised, perfusion-fixed rat optic chiasm.  The 
probability profiles demonstrate the distinct fiber 
orientations in the central region of the optic chiasm 
where myelinated axons from the two optic nerves 
cross one another to reach their respective 
contralateral optic tracts. These orientation maps are 
consistent with other published works on this 
anatomical region of the rat nervous system. 

 

 
Figure 5: Comparison of the standard diffusivity function (red) and our proposed diffusivity 
function (green). Both functions approximate two given signals (black). In the upper plot the 
signal is sharper than the one in the lower plot. The proposed diffusivity approximates better 
the signal in both cases compared to the standard diffusivity function which fails in 
approximating the sharper signal. 
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