
 
 
Figure 1: Experimental VTF (dashed) (3) and lognormal fit (solid) 

Table 1: Lognormal 
parameter ranges for 
realistic VTFs 

 

Figure 2: Simulated VTFs: dashed 
=mild dispersion, solid = severe 
dispersion  
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Introduction 
Perfusion maps calculated from the deconvolution of a dynamic susceptibility contrast (DSC)-MRI data are commonly used to make predictions of tissue that may 
infarct after acute stroke (1). However, since the arterial input function (AIF) used in the deconvolution is often measured in a major artery, there may be dispersion of 
the bolus of contrast during its passage from the artery to the tissue where the perfusion is to be measured. Bolus delay and dispersion are expected in patients with 
vascular abnormalities, such as stenosis, occlusion or collateral flow. It has been shown that dispersion introduces an underestimation of cerebral blood flow (CBF) and 
overestimation of mean transit time (MTT) measurements (2). This bias has important implications for the classification of ischemic tissue, and hence the selection of 
patients for treatment. An assessment of the bias is difficult since the function describing the transport of the bolus through the vasculature (the vascular transport 
function, VTF) is unknown. In a previous study the VTFs in a group of patients with vascular abnormalities were empirically determined (3). In this present work, a 
function is presented that is flexible enough to accurately describe the large range of dispersion observed. A realistic model for the VTF will facilitate the simulation of 
DSC-MRI data to describe a variety of cerebrovascular situations. Testing on simulated data sets (where the true perfusion values are known) has now become a crucial 
stage in the development of any DSC-MRI analysis technique. A model for the VTF is therefore an important step in the assessment of perfusion measurement errors.   
Theory 
The VTF is the probability distribution of transit times between the  major artery used 

to estimate the AIF, ( )tC a
est , and the tissue input where the true local AIF, )(tC a

true , 
is defined, such that (3): 
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Theoretical fractal modelling has shown that the flow distribution through a vascular 
network can be described by a lognormal distribution (4). One might expect there to 
be a corresponding lognormal distribution of transit times. Formally, a lognormal 
distribution of transit time t is written as (5): 
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The skewness of the VTF shape is determined by σ , the scale by µ  and the location 

by t0.  These parameters will depend on the arterial network structure as well as 
possible stenosed or occluded arteries. Thus, a unique VTF describes dispersion to 
each voxel in each patient. 
Methods 
In a previous study, 20 characteristic examples of the VTF from in vivo data in 15 patients with various cerebrovascular abnormalities were measured (3).  This was 
achieved by deconvolving Eq. [1] for a global AIF (measured in the middle cerebral artery), and calculated local AIFs (using independent component analysis (6)); the 
VTFs were subsampled at 0.1s over 20s.  
In the present study, the same experimental VTF data were modelled with a three-parameter lognormal distribution (Eq. [2]). The mean and variance of the vascular 
transit time (MVTT and VVTT respectively) were also calculated from the fitted distributions (4): 
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Note that the MVTT definition given here does not take into account the shift parameter t0 .The parameter ranges for µ , σ  and t0  found to describe the real data (see 

Results) were used define parameter ranges for a simulated set of lognormal VTFs. 528 VTF were simulated for each combination of parameter values: σ  ranging 0.2 
to 1.2s in steps of 0.2s, for µ  ranging -1.5 to 2.0s in steps of 0.5s, and t0 ranging -1.0 to +1.0 in steps of 0.2s. Corresponding MVTT and VVTT values were calculated 

and compared with experimental values. 
Results 
Real data: Figure 1 illustrates five experimental VTFs (dashed lines) and their lognormal fit 
(solid lines). Across the 20 VTFs, σ  was found to vary between 0.30 and 1.05s, (larger σ gives 
a more skewed VTF), µ  between -0.83 and 1.5s, (larger µ  gives a broader VTF), t0 between -

1.37 and 1.82s, the MVTT between 0.66 and 5.50s, and the VVTT between 0.22 and 9.29s2. 
Simulated data: For each simulated value of µ , the simulated values of σ  found to give an 

experimentally consistent MVTT and VVTT are given in Table 1. VTF defined with the largest 
σ appear approximately exponential, becoming more bell-shaped as σ  is decreased. For each 
σ , VTFs defined with the smallest µ  appear sharpest, becoming broader as µ  is increased. 

Figure 2 exemplifies two simulated VTFs: The dashed line represents a mild stenosis (σ =1.0s, 
µ =-1.0s and t0=0.2s, MVTT=0.607s and VVTT=0.632s2). The solid represents a more severe 

stenosis ( σ =0.2, µ =1.5 and t0=-1.1s, MVTT=4.572s and VVTT=0.853s2) (3). 

Discussion 
The experimental VTFs show that a mild stenosis may be modelled with exponentially decaying VTF (3). This model has 
been assumed in many DSC-MRI simulation studies (e.g. (2)). However, an exponential model is incorrect for flow through a more severe stenosis (3). The lognormal 
was found to characterise the VTF for both mild and severe stenosis within a fairly narrow range of lognormal parameter values (Table 1). The experimentally informed 
VTF model for dispersion presented here could be used to simulate more realistic and flexible DSC-MRI data sets.  These would be valuable for testing DSC-MRI 
analysis techniques across a broad range of cerebrovascular situations, and for the estimation of dispersion related perfusion measurement errors. Ultimately, this could 
have important implications for predictor models that utilise DSC-MRI perfusion maps to predict tissue infarction. 
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σ  µ  t0 /s 
MVT
T /s 

VVT
T /s2 

0.91 -0.67 0.54 0.78 0.80 

0.75 -0.15 0.63 1.14 1.00 

0.56 0.36 -0.30 1.67 1.22 

0.78 0.59 -0.51 2.45 5.01 

0.37 1.03 -0.78 3.00 1.32 

µ  σ  

-1.5 1.0-1.2 
-1.0 0.8-1.2 
-0.5 0.6-1.2 
0.0 0.4-1.2 
0.5 0.2-1.0 
1.0 0.2-0.8 
1.5 0.2-0.6 
2.0 0.2-0.4 
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