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Introduction 
Dynamic susceptibility contrast measurements are processed by deconvolution of the residue Function R as defined in equation (1) [1]. The deconvo-
lution is commonly performed using the Fourier convolution theorem or the singular value decomposition (SVD). A circular interpretation of the 
convolution leads to the circular SVD (oSVD) that is mathematically equivalent to the Fourier deconvolution approach [2]. Despite this fact the 
comparison of the impact of those methods on the estimate of perfusion parameters was obscure, as different filters where applied in the different 
approaches for noise reduction. In this work we present how oSVD and Fourier filters can be transformed into each other, by analyzing the above 
mentioned mathematical equivalence. 
Theory 
The dynamic perfusion equation (1) arises from the tracer dilution theory [1]. The measured tissue concentration ct(t) of an injected contrast agent is 
computed from an arterial input function a(t) by the convolution: 

       (1) 
where R is the residue function and CBF the blood flow. The discretization of equation (1) involves an extrapolation of the measured curves (e.g. zero 
filling) or periodic (circular) interpretation of the convolution in order to avoid range violations. The Fourier convolution theorem can be applied if the 
measured curves are either zero filled to meet the integration limits in the transform or interpreted as if they reoccur periodically (circular interpretation). 
At increasing size of the zero filling, the deconvolution result converges to the one obtained by periodic interpretation. Facing this fact and that zero 
filling strongly decreases the computational efficiency; we focus on the circular interpretation in this work. Circular interpretation also leads to an 
independence of the estimated flow on the arrival time [3]. Equation (1) can be rewritten in matrix form for this case: 

     (2)       where            (3) 
The matrix A can be inverted by diagonalization that can be achieved by means of SVD or Fourier decomposition, yielding a vector that represents the 
residue function R: 

 SVD:    (4)      Fourier:    (5)     with    (6) 
The matrices U,V and the diagonal matrix S in equation (4) are obtained by the SVD algorithm [4] for the matrix B=AAT. The columns of the matrix F 
in equation (5) contain the Fourier basis as vectors. If the Fourier convolution theorem holds, F diagonalizes B as well. If a matrix can be diagonalized 
by two other matrices, they have to be same up to a permutation of their columns containing the eigenvectors of the matrix. This is the reason for the 
mathematical equivalence of oSVD and Fourier deconvolution. The corresponding permutation matrix can be found by the property, that the SVD 
algorithm sorts the eigenvalues in descending order whereas the Fourier approach leads to an order with respect to the frequency. Thus the matrix V is 
only a column permutation of V. Such a transform between the two perspectives can easily be found for all subspaces, where the eigenvalues are large 
enough to be sorted unambiguously in descending order. The corresponding permutation matrix can then be applied to filters designed for a particular 
deconvolution approach. 
Results 
The eigenvalues found by the two methods are plotted in  Fig. 1. The values differ by less then 10-14 (in MATLAB) which underlines the mathematical 
equivalence. The reordering of the Fourier spectrum in the oSVD spectrum explains the pairwise appearance of eigenvalues, as real signals have a 
symmetric spectrum. The eigenvectors found by oSVD as columns of the matrix V are the Fourier basis functions as shown in Fig. 2. 
For a monotonously decreasing Fourier spectrum of the concentration curves the permutation is unity. This case is met if the first pass of the contrast 
agent injection has been extracted prior to the deconvolution [5]. If recirculation boli are included, a side peak in the Fourier spectrum appears at the 
corresponding frequency. In this case the permutation can be found by the reordering explained above. The filter transform properties are depicted in 
Fig. 3 and Fig. 4. A threshold filter applied to the oSVD eigenvalues (blue bar in Fig. 3) is split up into a band pass filter in the frequency domain as 
depicted in Fig. 4 if the spectrum shows side peaks with amplitudes above the oSVD threshold.  

    
Fig. 1: Eigenvalues found by SVD 
and Fourier decomposition in 
descending order. 

Fig. 2: Plot of the eigenfunctions 
found by the SVD deconvolution 
sorted by frequency. 

Fig. 3: SVD eigenvalues. The 
underlying block indicates the pass 
interval of the eigenvalues. 

Fig. 4: Fourier spectrum. The 
underlying blocks indicate the pass 
frequency range filter in Fig. 3.  

Discussion 
The presented work gives insight in the properties of SVD and Fourier deconvolution. If only the first bolus passage is contained in the measured 
concentration time courses, the filter transform is the unity matrix. Recirculation yields symmetric side lobes in the Fourier spectrum that cause the pass 
interval of typical SVD threshold filters to distribute to the peaks in the spectrum. A similar finding was also reported in [6]. Using the presented 
transform, the knowledge on filter design from both methods can be used in order to come up with better filters for perfusion processing. 
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