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         Figure showing three estimated AIFs � blue : B1, red : B2, green: B3. 
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Introduction In order to estimate tissue kinetic parameters from DCE-MRI data it is necessary to estimate, measure or assume a form for the arterial input function 
(AIF) of the imaged tissues.  We have recently developed a methodology that uses a physically motivated functional form for the AIF, the parameters of which are then 
directly estimated from the tissue data within an ROI [1].  All unknown parameters, including the tissue kinetic parameters and onset times, are determined 
simultaneously in a Bayesian estimation procedure.  A key advantage of this approach is that the AIF is estimated directly from the tissues of interest, and is therefore 
appropriate for them specifically, but this is of course predicated on the assumption that the functional form used for the AIF is appropriate.  Ultimately it will be 
necessary to directly determine which model most accurately reflects reality, and whether the same model formulation is appropriate for all patients.  However, as a 
precursor it is instructive to investigate the effect different AIF models have on the tissue parameter estimates.  If a more complex AIF model produces very similar 
tissue parameter estimates, then clearly the additional complexity is unnecessary.  The models considered here concentrate on evaluating the effect of 
recirculation/mixing in the AIF on the tissue parameter estimates. 
 

Theory The model for the AIF is split into two parts � the initial bolus and a Body Transfer Function (BTF) that describes the response of the whole body to an 
idealised impulse bolus.  Mathematically this is given by cp(t) = cb(t) + cb(t) ⊗ Bn(t), where cb(t) is the bolus shape, Bn(t) is the body transfer function and cp(t) is the 
resulting plasma concentration, i.e. the AIF.  The bolus is modelled using a gamma-variate function of the form cb(t) = ab µb

2 t exp(-µbt), where the additional µb
2 term 

implies that ab is the area of the bolus.  This function has been used in DSC-MRI for some time, where only the first-pass response is utilised, and so its use here is a 
natural extension of this.  Depending on its functional form, the BTF has the ability to capture effects such as recirculation, mixing with the plasma and equilibriation 
with the whole body extracellular-extravascular space (EES).  Three BTF models are considered here :  
                       B1(t) = ae exp(-µet),                       B2(t) = ae exp(-µet) + am exp(-µmt),                       B3(t) = ae exp(-µet) + ar (t - τr) exp(-µr(t - τr)). 
The first BTF is designed to model equilibriation with the EES only, which is known to follow an exponential function [2].  The second BTF models equilibriation, but 
includes a second exponential term to describe mixing/recirculation within the plasma.  The third model is similar, but here the mixing/recirculation term is a gamma-
variate function with an explicit delay term τr.  This formulation can describe delay and dispersion independently, whereas the equivalent term in model 2 is forced to 
describe both effects with µm, and so has less flexibility. 

The acquired data are noisy measurements of the tissue concentration, which are related to the AIF via ct(t) = cp(t) ⊗ h(t-t0), where ct(t) is the tissue concentration, 
h(t) is the tissue residue function and t0 is the bolus arrival time.  The residue function used here is from the standard Tofts model [4], h(t) = Ktrans exp(-kept).  With these 
functional forms all the convolutions can be calculated analytically to give an explicit form for the tissue concentration.  The resulting functions for ct(t) have an overall 
scaling factor of abK

trans, so it is not possible to determine these parameters independently from the data.  Instead we fix ab = 0.8, which matches the bolus area measured 
in-vivo, as reported in [3].  With this approach the shape of the AIF is entirely determined from the data � only its amplitude scaling is fixed a priori via ab. 
 

Methods Simulations were used to demonstrate that the parameters for the three model variants could in principle be estimated from the tissue data.  The three BTF 
models given above were then used to estimate the AIF and tissue parameters for an example data set from a breast carcinoma containing 442 pixels.  The time-series 
for each pixel consisted of 41 measurements with a sample interval of 7.5 sec, which were converted from MR signal intensity to tracer concentration using standard 
methods [5].  The estimated AIFs were then compared qualitatively and quantitatively, and the tissue parameters compared quantitatively.  The statistic used to compare 
the estimated tissue parameters was ∆ij = (xi − xj)/((xi + xj)/2) ×100% where xi and xj are the estimates of the given parameter using BTF models i and j respectively. 
 
 Results  The figure shows the three estimated AIF curves for the duration 
of data acquisition.  The washout phase for t > 2 min is very similar for all 
three curves, the area under each being 2.041, 2.079 and 2.040 for models B1 
- B3 respectively.  Since ab is fixed to 0.8, the different bolus heights and 
durations are accounted for by the bolus rate constants µb, which are 14.1, 
20.0 and 18.0 for the three models.  The major difference between the 
curves is the period between t = 0.8 � 2.0 min which represents the 
mixing/recirculation phase.  Model B1 has no explicit term for this phase, so 
it appears to compensate by widening the bolus term, as evidenced by the 
blue curve and smaller µb.  Model B2 does model the mixing phase, and this 
is evidenced by the red curve being higher than the blue for t = 0.8-2.0 min.  
Model B3 is the most detailed, and the curve demonstrates that the estimated 

parameters describe a specific recirculation peak.   
All tissue parameter estimates were within their normal ranges. The table shows the 

median, 5- and 95-percentiles of the similarity statistic over the 442 pixels, for the three tissue 
parameters, including ve = Ktrans/kep.  The first column compares models 1 and 2, and the results 
indicate that there is about a 10% reduction in the estimates of Ktrans and kep, though the change 
in ve is much less significant.  The second column compares models 2 and 3, where an increase 
in the estimates is seen, but once again the change in ve is small.  The final column compares 
models 1 and 3,  and here the changes are of the order of 5%, but the percentile figures indicate 
that the range of changes is roughly symmetric about 0. 
 
 
 

Conclusions Given the limitations of each model, all the estimated AIF curves are plausible, and a tentative interpretation of the parameters in each case has been given.  
Model B3 is the most realistic, and for the data set used here the estimated parameters give an AIF that conforms to prior expectations.  The results for the tissue 
parameter differences are mixed.  The table shows that overall the changes were relatively small � around 10-20% or less � so a more extensive study is required to 
determine these changes more confidently.  The more surprising result is that models B1 and B3 have the most similar tissue parameter estimates.  If further work can 
confirm this conclusion, then the implication is that although the tissue data does contain enough information to estimate quite complicated AIF models, this additional 
complexity is unnecessary as it has little impact on the tissue parameter estimates. 
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 ∆12 ∆23 ∆13 
Ktrans -12.6 (-14.8, -6.12) 9.02 (-2.66, 18.5) -4.12 (-12.6, 9.30) 

kep -10.9 (-18.2, -6.97) 6.83 (-0.157, 24.2) -3.96 (-12.3, 9.67) 
ve -1.99 (-3.49, 6.61) 1.50 (-8.02, 5.32) 0.00934 (-6.12, 5.35) 
 

Table showing test statistic comparing the 3 BTF models for each 
tissue parameter.  Large numbers are median values over all pixels, 
bracketed numbers are 5- and 95-percentiles. 
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