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Introduction  Several pharmacokinetic models have been proposed and applied in quantitative analysis of dynamic contrast-enhance MRI (DCE-MRI) 
studies with low-molecular-weight contrast agents. Owing to considerable variations in quantification methodology, different kinetic parameters may be 
estimated from different models. There is an increasing need for investigating the measurement variability and sensitivity of such pharmacokinetic analysis. In 
this study, a bootstrap resampling method was used to examine the uncertainty of kinetic parameters estimated from three commonly utilized pharmacokinetic 
models. The dependence of each modeling parameter on the imaging parameters and other input variables was also studied. 
 
Methods  Three two-compartment pharmacokinetic models, which consist of blood plasma space and extravascular-extracellular space, were compared. 
Model 1, the generalized kinetic model (1), computes Ktrans (transfer constant, min-1), kep (rate constant, min-1), and vp (fractional plasma volume). Model 2, 
the model of Tofts and Kermode (2), calculates Ktrans and ve (fractional EES volume) by assuming the vascular input function (VIP) is biexponential. Model 3, 
the Brix model (3), assumes that the contrast agent is administered at a constant rate Kin (mass/time) and eliminated with first-order kinetics. Contrast 
enhancement in tissue can be described by: an enhancement constant, A (a.u.), which is proportional to Kin, K

trans, and other factors; kep; and an elimination 
constant, kel (min-1). 
A bootstrap method was implemented using IDL to study the variability of the kinetic parameters estimated by each pharmacokinetic model and to provide 
confidence intervals for these parameters. The bootstrap (4) is a computer-based method in which a set of data is randomly resampled with replacement many 
times, and statistical estimates are drawn from this data collection. The original data sets used in this study were obtained from a DCE-MRI study of a patient 
with glioblastoma multiforme, which was performed on a 3.0-T GE Excite MRI system with a phased-array head-coil. A 2-D T1-weighted fast spoiled 
gradient echo (FSPGR) sequence was used in the DCE-MRI acquisition (TE/TR=1.4/5.0 ms, α=16o, receiver bandwidth=+31.25 kHz, FOV=24x24 cm2, 
matrix=256x192, slice thickness=6.0 mm, 16 slices without gap, parallel imaging acceleration factor=2, temporal resolution=8.11 sec/phase). A total of 64 
phases was acquired before, during, and after an intravenous bolus injection of 0.1 mmol/kg body weight of Gd-DTPA. Precontrast T1 maps were acquired 
using the same 2-D FSPGR sequence with multi-low flip angles.  
Three regions of interest (ROIs) within the tumor were manually selected: a small uniformly enhanced region (ROI-1); an ROI encompassing the whole tumor 
(ROI-2) on the same slice as ROI-1; and a small, slightly enhanced region (ROI-3) on an adjacent slice. A representative blood ROI was drawn in the superior 
sagittal sinus. A random number generator in IDL randomly selected 60% of the pixels in blood and tumor ROIs, with replacement. The VIF (Cp) and tumor 
contrast concentration curves (Ct) were then calculated from the selected pixels and fitted to each model using a nonlinear least squares fitting routine. This 
resampling process was repeated and 1000 sets of kinetic parameters were computed for each model. The mean, standard deviation (SD), coefficient of 
variation (COV), and 95% confidence interval (CI) of each kinetic parameter were obtained. 
The sensitivity of the kinetic parameters was studied by varying input variables individually to compute the corresponding kinetic parameters. A linear 
regression was then performed to fit the percentage change in each kinetic parameter over the percentage change in the input variable. The slope of this linear 
function was used to estimate the dependence of the modeling parameters on each of the input values.  

Results  The mean, SD, and 95% CI 
of the kinetic parameters estimated 
from all three models are 
summarized in the figures for tumor 
ROIs. The boxes show the mean 
values + the SD, while the mean 
values are represented by the vertical 
lines within the box. The whiskers 
indicate the 95% CIs. The sensitivity 

analysis showed dependence of all three models on T10 of tumor and the flip 
angle of the FSPGR sequence. The contrast agent relaxivity value only 
affected Model 2 and Model 3. Model 1 showed significant dependence on 
the T10 of blood and the hematocrit value assumed.  Model 2, which used a 
standard VIF, was sensitive to the amplitudes and rate constants of the 
exponential decay. 
 
Discussion and Conclusions  From analyzing a brain tumor study, three 
commonly utilized models demonstrated different levels of uncertainty in 

kinetic parameter estimation. 
Compared with the well-enhanced 
tumor regions, the poorly enhanced 
tumor area showed increased 
parameter variation. The kinetic 
parameters were found to be 
dependent on precontrast T1 values 
of tumor and blood, the flip angle 
used in imaging acquisition, and 

other constants used in modeling. It is, therefore, important to understand the sources of measurement variation in each model in order to develop 
standardized measurement methods and robust analysis tools. 
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