A Combined Diffusion-Perfusion Model for the Analysis of DCE-MRI Data

M. Pellerin¹, T. E. Yankeelov², and M. Lepage¹

¹Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada, ²Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States

Introduction: Many models have been proposed to describe the signal enhancement time course in tissues from images acquired with a dynamic contrast-enhanced MRI (DCE-MRI) protocol.¹⁻³ A common characteristic of the pharmacokinetic models is that they analyze the transcapillary exchange of a contrast agent (CA) on a voxel by voxel basis. In that approach, exchange of CA takes place between the blood plasma and the extravascular extracellular space. This scheme neglects the diffusion of CA within a tissue. However, CA that has extravasated in a well perfused region may diffuse to a poorly perfused, possibly necrotic, region of a tumor (Fig.1). In this case, neglecting diffusion between voxels can lead to underestimated values of the transcapillary transfer rate (K^{trans} [min⁻¹]) in the well perfused region and overestimation, even to unphysical values, of the extravascular extracellular volume fraction

Figure 1 : T1-weighted gradient echo images of mouse subcutaneous breast carcinoma. TR/TE: 200/2.4 ms, α : 30°, NA: 4, FOV: 32 x 32 mm², data matrix 128 x 128. Images have been zoomed to show the tumor only. A bolus of Gd-DTPA was injected 1 min after the first image.

Figure 2: Fitted values of K^{trans} and v_e obtained from the reference region model and from the proposed DP model. Data used with the DP model was downsampled to reduce computation time.

 (v_e) in the necrotic region (e.g., $v_e > 1$). We propose a diffusionperfusion (DP) model where CA diffusion is taken explicitly into account and incorporated into the standard Tofts model¹.

Methods: Adding the diffusion in 2D to the Tofts model¹ for each voxel (i,j) yields:

$$\frac{dC_{i,j}(t)}{dt} = K_{i,j}^{\text{trans}} \left(C_{p}(t) - \frac{C_{i,j}(t)}{v_{e\,i,j}} \right) + \sum_{Interface} D(\vec{r}) \vec{\nabla} \frac{C_{i,j}(t)}{v_{e\,i,j}} \bigg|_{Interface} \frac{\vec{S}}{V}$$

where $C_p(t)$ is the plasma concentration of CA, $D(\mathbf{r})$ is the diffusion coefficient of the CA within the tissue, \vec{S} is the oriented surface between a voxel (i,j) of volume V and one of its neighbours. Transforming the matrix C having a size of m by n into a vector $\overline{\mathbf{C}}$ of length m*n and assuming a small time interval Δt , the solution to the differential equation is approximated by:

$$\overline{\mathbf{C}}(t+\Delta t) = \Delta t \overline{\mathbf{K}} C_p(t) \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix} + \left[\mathbf{1} + \frac{1}{a^2} \Delta t \overline{\mathbf{D}} \overline{\mathbf{V}} - \Delta t \overline{\mathbf{K}} \overline{\mathbf{V}} \right] \overline{\mathbf{C}}(t)$$

where $\overline{\mathbf{K}}$, $\overline{\mathbf{V}}$, $\overline{\mathbf{D}}$ are $m \times n$ by $m \times n$ sparse matrices, a^2 is the area of one pixel, and 1 is the $m \times n$ by $m \times n$ identity matrix.

We used a simulated annealing fitting algorithm coded in MatlabTM. A stochastic search method is needed to efficiently converge in the very large discrete solution space having countless local minima. The computation was performed on a supercomputer (872 nodes, Intel P4 with 2GB RAM per node). The performance of the proposed model was first tested on simulated data where diffusion of CA was introduced.

Results: In the simulation studies, our results show that the parameters used to generate the simulated data could be recovered reliably when realistic noise (0 - 10% of maximum concentration)

was added to the data. The fitting algorithm was found to be insensitive to changes in the initial conditions. We tested our algorithm with experimental DCE-MRI data from mice acquired using the parameters stated on Fig. 1 and the apparent diffusion coefficient (ADC) of water determined from diffusion-weighted spin echo images of the same animals. As a first approximation we hypothesized that the ADC of Gd-DTPA was the same as the measured ADC of water. An arterial input function was derived from a reference region, using the formalism of ref. 3. The top row of Fig. 2 shows the values of K^{trans} and v_e as obtained from the reference region model,³ which is based on the Tofts model.¹ Unphysical values of v_e are obtained in the center of the tumor, which indicates that a standard two-compartment models may be inadequate in this case. The bottom row shows results from the DP model. Higher K^{trans} values in the well perfused periphery and lower (more realistic) values of v_e in the center are obtained. We chose to use a downsampled dataset to reduce computation time.

Conclusions: Diffusion of CA within a tissue was incorporated in a two-compartment pharmacokinetic model. This DP model was first tested using simulated data. Using real data from a mouse tumor, the DP model yielded more realistic values of v_e in the poorly perfused central region and higher values of K^{trans} in the periphery. This could increase the usefulness of K^{trans} in clinical applications.

References: 1-Tofts PS *et al.*, J Magn Reson Imaging *10* 223-32 (1999) **2-**Yankeelov TE *et al.*, Magn Reson Med *50* 1151-69 (2003) **3-**Yankeelov TE *et al.*, Magn Reson Imaging *23* 519-29 (2005)