A Transient Model of Off-resonance Saturation for Single-coil CASL

W. Dai¹, O. L. Lopez², and H. M. Gach^{3,4}

¹Computer Science, University of Pittsburgh, Pittsburgh, PA, United States, ²Neurology, University of Pittsburgh, PA, United States, ³Research Imaging, Nevada Cancer Institute, Las Vegas, Nevada, United States, ⁴Radiology & Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States

Introduction: The saturation of macromolecules during single-coil continuous arterial spin labeling (CASL) perturbs the control and label water signals, and affects perfusion quantification. Off-resonance saturation models were developed previously for steady-state conditions using various line shapes [1, 2, 3]. We have adapted these models to address realistic transient conditions used in CASL, including amplitude modulated (AM) RF used in multi-slice CASL with AM frequencies (f_{AM}) of 0 and 125 Hz.

Theory: The 2-compartment model can be described by the set of symmetric Bloch equations in the presence of an RF field [2]. We introduced two parameters (C_a and C_b) to describe the instantaneous longitudinal relaxation rate for pools A & B for saturation times less than 5T₁. The relative magnetization of free water pool (A) can be described by:

$$\frac{M_{z}^{a}}{M_{0}^{a}} = \frac{R_{b} \left[\frac{\tilde{R}\tilde{M}_{0}^{b}}{R_{a}}\right] - \tilde{R} \left[\frac{C_{b}}{R_{a}M_{0}^{a}}\right] + (R_{rfb} + \tilde{R} + R_{b}) \left(1 - \left\lfloor\frac{C_{a}}{R_{a}M_{0}^{a}}\right\rfloor\right)}{(R_{rfb} + \tilde{R} + R_{b}) \left(1 + \left(\frac{\omega_{1}}{2\pi\Delta}\right)^{2} \left[\frac{1}{R_{a}T_{2a}}\right]\right) + \left[\frac{\tilde{R}\tilde{M}_{0}^{b}}{R_{a}}\right] (R_{rfb} + R_{b})}$$

where $\tilde{R} = RM_0^a$, $\tilde{M}_0^b = M_0^b / M_0^a$. $R_{a,b}$ is the longitudinal relaxation rate $(1/T_{1a,b})$. $M_0^{a,b}$ is the equilibrium longitudinal magnetization in the absence of any RF field. R is a fundamental rate constant such that $R_{ba} = RM_0^b$ and $R_{ab} = RM_0^a$ in which R_{ba} is a

pseudo-first-order cross-relaxation rate constant from pool B to pool A. ω_1 and Δ are the amplitude and frequency offset, respectively, of the off-resonance saturation pulse. $R_{r/b}$ is the line shape of the macromolecular pool B. There are seven parameters to be determined: \tilde{R} , R_b , $\tilde{R}\tilde{M}_0^b / R_a$, $1/R_a T_{2a}$, T_{2b} , $C_a/R_a M_0^a$ and $C_b/R_a M_0^a$.

Methods: Each off-resonance RF excitation (3.7 s pulse train at 92% duty cycle) was followed by a strong crusher gradient and then a 15-slice EPI acquisition (FA: 90⁰, Matrix: 64x64, 100 ms post-labeling delay, superior to inferior acquisition) using a GE 1.5 T Signa MRI (LX) at the University of Pittsburgh MR Research Center. Different irradiation amplitudes $\omega_1 / 2\pi$ [78Hz, 110Hz and 156Hz ($f_{AM} = 0$); and 128Hz, 181Hz and 256Hz ($f_{AM} = 125$ Hz)] and 12 different offset frequencies [Δ , from 0.25 to 15 kHz] were used. Images were also acquired without off-resonance saturation for data normalization. A minimum of 15 repetitions was acquired for each frequency and amplitude. We performed a global fit to the model for each data set with 12 different offset frequencies and 3 irradiation powers, using the super-Lorentzian, Gaussian, and Lorentzian line shapes for the macromolecular pool B [1, 2, 3].

Results & Discussion: Figure 1 compares the fits for f_{AM} =0Hz using the different line shapes. The Lorentzian line shape provides the best fit for our gray matter (GM) and white matter (WM, not shown) saturation data for f_{AM} of both 0 and 125 Hz. The fitted parameters are in reasonable agreement with the literature (Table 1). The fitted values of $C_d/R_dM_0^a$ and $C_b/R_dM_0^a$ are less than 10⁻⁶, indicating that saturation is near steady-state. The Lorentzian model allows us to calculate and correct the off-resonance saturation effects for different frequency offsets (e.g., slice locations) and saturation amplitudes (B_I) in our single-coil CASL experiments.

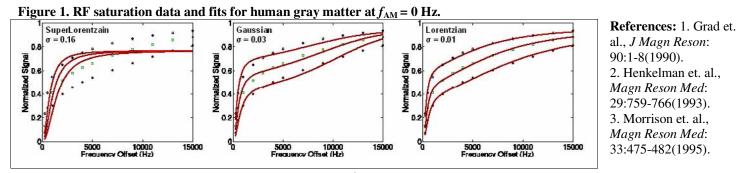


Table 1. Fitting Parameters from Saturation Data ($R_b = 1s^{-1}$)

	$T_{2b}(\mu s)$	$R(s^{-1})$	$rac{\widetilde{R}\widetilde{M}_{0}^{\ b}}{R_{a}}$	$\frac{1}{R_a T_{2a}}$	$\frac{C_a}{R_a M_0^a}$	$\frac{C_{b}}{R_{b}M_{0}^{b}}$	σ
GM at $f = 0$ Hz	34.2 ± 1.0	31.9 ± 0.6	2.44 ± 0.04	28.3 ± 1.2	<10 ⁻⁶	<10 ⁻⁶	0.0124
WM at $f = 0$ Hz	41.6 ± 1.1	28.4 ± 0.5	3.02 ± 0.04	28.1 ± 1.4	<10 ⁻⁶	<10 ⁻⁶	0.0124
GM at $f = 125$ Hz	34.1 ± 1.2	45.1 ± 1.0	1.90 ± 0.03	15.3 ± 0.8	<10 ⁻⁶	<10 ⁻⁶	0.0140
WM at $f = 125$ Hz	44.8 ± 1.1	46.7 ± 1.1	2.69 ± 0.04	17.6 ± 1.0	1.8×10^{-6}	1.9× 10 ⁻⁶	0.0111