Quantitative time-domain analysis of intermolecular multiple-quantum coherences (iMQC) and effects of radiation damping

S. Kirsch¹, and W. E. Hull²

¹Dept. of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Central Spectroscopy Dept., German Cancer Research Center (DKFZ), Heidelberg, Germany

Introduction

Pulse sequences of the CRAZED-type [1] generate iMQC signals of order n > 1, whose amplitude and time course depend on B_0 and several spin and sequence parameters [2]. In principle, iMQC signals may be used for simultaneous measurement of the diffusion constant D and relaxation times T_1 and T_2^* [3]. The effects of radiation damping at high spin densities on iMQC lineshapes have been investigated for H₂O samples with long relaxation times [4]. Here we investigate quantitatively the behavior of the time-domain iMQC signals for a moderately doped water sample. Theory

 $T_{\rm r} - 90^{\circ}_{\rm ph1} - G(\delta) - \varDelta - \beta^{\circ}_{\rm ph2} - n \cdot G(\delta) - \varDelta - {\rm FID}_{\rm ph3}(t')$ Our implementation of the CRAZED sequence was as follows:

Following a relaxation delay (T_r), a 90° excitation with phase ph1 creates iMQC which evolves for the time $\tau = \delta + \Delta$ with spatial encoding by a gradient pulse with amplitude G and duration δ . In practise, a minimum value for the variable delay Δ will be required for the decay of eddy current effects and B_0 shifts. Following the read-out pulse β_{ph2} , the detectable SQC derived from nQ coherence is rephased by the second gradient pulse nG and evolves in the time domain $t = \delta + \Delta + t'$ under the influence of the distant dipolar field B_{DDF} and a radiation damping field B_{rd} produced by the rf current induced by the precessing M_{xy} magnetization. The combined influence of B_{DDF} and B_{rd} may result in "turbulent" spin dynamics when relaxation times are long [5]. However, for systems with short T_2^* , B_{rd} should be negligible for the FID at times ($\tau + t$) >> T_2^* and nonturbulent dynamics are expected. The MR signal from iMQC of order *n* can be written as:

$$M^{+}(n,\tau,t) = C_{n}(\tau) \cdot A_{n}(t); \quad \text{with} \ C_{n} = \frac{i^{n+1}}{(n-1)!2^{n}} M_{0}^{n} (\gamma \mu_{0})^{n-1} R_{\text{DDF}}^{-(n-1)} e^{-n\tau/T_{2}^{*}} (1 - \cos\beta) \sin^{n-1}(\beta) \quad \text{and} \ A_{n}(t) = e^{-t/T_{2}^{*}} \left[1 - e^{-R_{\text{DDF}}} \right]^{n-1}$$
(2)

for an on-resonance singlet, where $R_{\text{DDF}} = 2k^2D + 1/T_1$, $k = \gamma G\delta$, $\gamma =$ magnetogyric ratio, μ_0 = vacuum permeability, and M_0 = equil. magnetization. detuned **Materials and Methods** tuned

All experiments were performed at $v_0(H) = 300.13 \text{ MHz} (7.05 \text{ T}) \text{ and } 27 \text{ }^{\circ}\text{C}$ with a Bruker AM-300 spectrometer (Bruker BioSpin) equipped with imaging hardware, a microscopy probe (four-turn Helmholtz rf coil for 10-mm samples), and an actively shielded gradient system. The 10-mm sample tube contained 9.93 mM NiSO₄ in H₂O. Measurements were performed without deuterium lock and without B_0 compensation, with the rf coil optimally tuned (90° pulse = 8.6 µs) and detuned (90° = 82.5 μ s) to minimize radiation damping. T_1 was measured by inversion-recovery (57.2 \pm 0.7 ms tuned, 61.79 ± 0.04 ms detuned), T_2^* by fitting a pulse-acquire FID (11.4 ± 0.01 ms tuned, 29.2 ± 0.1 ms detuned). H₂O signals derived from iMQC with n = 1 - 4 were acquired using sequence (1) on-resonance. An *n*O phase cycle of 2n steps was employed: ph1 = (0, 1, ... 2n-1)·($360^{\circ}/2n$); $ph2 = 0^{\circ}$; $ph3 = (add, sub)_n$. Parameters were: spectral width 2994 Hz, 4K complex points, 16-bit ADC, filter bandwidth = 50 kHz (n = 1 - 3) or 25 kHz (n = 4); acquisition time = 684 ms; $T_r = 1.0$ s, $\beta = 90^{\circ}$, G = 20.85 mT/m, $\delta = 1 \text{ ms}$; $\Delta = 5 \text{ ms}$ (to avoid the B_0 shift transient); excitations (NEX) = 16 - 640 (depending on *n*). The acquired time-domain quadrature signals s_n were scaled with calibrated receiver gain factors (RG) and NEX and fitted by a Levenberg-Marquardt algorithm (ORIGIN[®], OriginLab, USA) according to

$$s_n(\tau,t)/(\mathrm{RG}\times\mathrm{NEX}) = S_n \cdot C_n(\tau) \cdot A_n(t) \cdot \exp[-i(\alpha + 2\pi\Delta f t)], \qquad (3)$$

using Eq. 2. Only three variables were fitted: S_{r} (abs, intens, scaling factor), α (an RG-dependent phase constant), and T_2^* . All other defined or measured constants were fixed: $M_0 = 0.02257$ A/m (H₂O), $D = 2.44 \times 10^{-9}$ m² s⁻¹ (T = 300 K), T_1 , δG , τ , β , Δf (freq. offset from peak picking, <2 Hz).

		-				
	Results & Discussion	Table 1	tuned			
	Fig. 1 presents plots of the real (\blacksquare) and	n	1	2	3	4
$\stackrel{\scriptstyle{\scriptstyle{\scriptstyle{}}}}{=} \sigma^{-} 5 \times 10^4$ $n=4$ $\stackrel{\scriptstyle{\scriptstyle{\scriptstyle{}}}}{=} \sigma^{-} 1 \times 10^4$ $n=4$	imaginary (\circ) scaled data points of Eq.	$S_n [10^4 \text{ au}]$	34.1 ± 0.6	66.7 ± 1.0	66.8 ± 0.7	72.7 ± 0.5
Fig. 1 $t_{[s]}^{t_{[s]}}$ $t_{[s]}^{t_{[s]}}$	3, normalized by division by $S_n M_0$. The	T_2^* [ms]	18.9 ± 0.03	18.8 ± 0.03	19.6 ± 0.05	20.2 ± 0.05
2	corresponding fitted curves ($\alpha - \alpha_{RG} [^{\circ}]$	253.8 ± 0.05	272.8 ± 0.70	271.8 ± 0.09	278.0 ± 0.93
showed good basic agreement ($r^2 > 0.91$ for all) with only minor systematic deviations			detuned			
(lineshape asymmetry). In Table 1 the fitted parameters S_n and $\alpha - \alpha_{RG}$ (phase corrected			3.57 ± 0.04	3.02 ± 0.03	3.04 ± 0.02	2.99 ± 0.20
for measured RG dependence) should ideally be constant for all n since all amplitude			29.9 ± 0.15	30.2 ± 0.04	29.7 ± 0.05	29.9 ± 0.34
and phase factors depending on n are incorporated in C_n and A_n of Eq. 3. Reasonably			79.9 ± 0.12	77.3 ± 0.44	79.1 ± 0.27	70.6 ± 8.8
constant S and phase were achieved for $n = 1$. A in the detuned case, without rediction						

(1)

constant S_n and phase were achieved for n = 1 - 4 in the detuned case, without radiation damping. The amplitude and phase factors were less consistent with theory in the tuned case, particularly for n = 1, suggesting incomplete nQ filtering, rf inhomogeneity, or pulse imperfections exacerbated by radiation damping. It is noteworthy that T_2^* values were essentially *independent* of *n* and, for the detuned case, agreed well with the limiting value of 29.73 ± 0.09 ms obtained for a pulse-acquire FID with the coil completely detuned $(R_2^* = 33.6 \text{ s}^{-1})$. For the tuned case T_2^* values were shortened to 19 - 20 ms, also independent of *n*. The contribution of radiation damping was $R_{rd} =$ 54.1 s⁻¹ for a pulse-acquire FID ($R_2^* = 87.7 \text{ s}^{-1}$) and $R_{rd} = ca.$ 18 s⁻¹ for iMQC ($R_2^* = 50 - 53 \text{ s}^{-1}$). Thus, the contribution of radiation damping to R_2^* of iMQC signals was about one-third of that observed for a normal FID, and surprisingly the same for signals differing by five orders of magnitude.

References: [1] Warren WS, et al. Science 262 (1993) 2005-2009. [2] Ramanathan C, et al. J Chem Phys 114 (2001) 10854-10859. [3] Barros Jr W, et al. J Magn Reson 178 (2006) 166-169. [4] Zheng B, et al. J Chem Phys 123 (2005) 074317. [5] Huang SY, et al. J Chem Phys 116 (2002) 10325-10337.