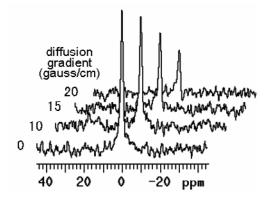
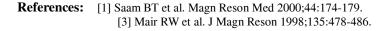
Probing Lung Geometry: Measurement of time-dependent diffusion of hyperpolarized ¹²⁹Xe in healthy mice

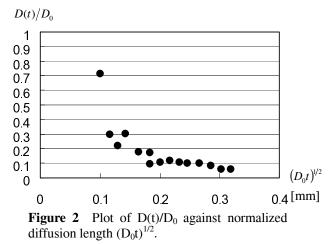
T. Wakayama¹, M. Kitamoto¹, A. Kimura¹, and H. Fujiwaka¹

¹Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan


Introduction: Most of the recent hyperpolarized (HP) gas diffusion studies have focused on the changes in apparent diffusion coefficient (ADC) of the gas in diseased lungs with a single diffusion time [1], although it is well-known that ADC in restricted space changes depending on its diffusion time. So far, it has been demonstrated in the porous material studies that the time-dependent ¹²⁹Xe diffusion allows geometric evaluation of the sample [2]. But to our knowledge, in vivo measurement of the significant geometric parameters such as surface-to-volume ratio and tortuosity of lungs has not been reported. In the present study we applied the time-dependent diffusion measurement to the healthy mouse lung using HP ¹²⁹Xe MR spectroscopy and tried to estimate surface-to-volume ratio and tortuosity.

Methods: The 3% xenon gas mixture, which consists of 3% Xe, 12% N₂ and 85% He, was polarized on the home-built hyperpolarizing system using 90 W laser diode arrays (Coherent Japan). Three male ddY mice (35-40g) were used in the present study. The mouse was anesthetized by an intraperitoneal injection of pentobarbital (40mg/kg) and masked for spontaneous inhalation of the 3% xenon gas mixture and oxygen gas. All the measurements were performed on Varian unity-INOVA NMR spectrometer equipped with a 9.4T magnet and ¹²⁹Xe-¹H tunable imaging probe (Doty Scientific Inc.). Diffusion weighted spectra of HP ¹²⁹Xe gas in the lung were acquired by pulsed gradient echo sequence [3] modified to add slice selection gradients. The acquisition parameters were: predelay = 1sec; RF pulse = 1000µs Gaussian-shaped gas-phase selective pulse; flip angle = 30°; spectral width = 30kHz; data point = 20k; axial slice thickness = 5mm; NEX = 8. In order to change diffusion time, the duration between a pair of bipolar diffusion gradients (Δ) was changed from 0.6 to 3 ms. The diffusion gradient width (δ) was set to be $\delta = \Delta - 0.05$ ms when $\Delta \le 1.0$ ms and fixed to 1.0ms when $\Delta > 1.0$ ms. In the measurement of ADC at each diffusion time, the strength of diffusion gradient was changed as 0, 10, 15, 20 gauss/cm for diffusion weighting. The time-dependent ADC in the pulmonary airspace was obtained from the diffusion weighted spectra, and surface-to-volume ratio (S/V) and tortuosity (α) of the lung was estimated from the following equations [2]:


$$\frac{D(t)}{D_0} \rightarrow 1 - \frac{4}{9\sqrt{\pi}} \frac{S}{V} (D_0 t)^{1/2} \qquad \text{(short time asymptote)}, \qquad \qquad \frac{D(t)}{D_0} \rightarrow \frac{1}{\alpha} \qquad \text{(long time tortuosity asymptote)},$$


where D_0 is the effective unrestricted diffusion coefficient of xenon in the inhaled gas and calculated to be $D_0 = 33.0 \text{mm}^2/\text{s}$ from Chapman and Enskog Theory and Wilke's law.

Results and Discussion: Figure 1 shows diffusion weighted HP ¹²⁹Xe spectra acquired from the mouse lung at diffusion time $(\Delta) = 1.5$ ms. Figure 2 shows the plot of D(t)/D₀ against normalized diffusion length of $(D_0t)^{1/2}$. It was observed commonly in three healthy mice that D(t)/D₀ decreases with increasing $(D_0t)^{1/2}$ within the range up to $(D_0t)^{1/2} \sim 0.2$ mm and approaches a nonzero finite value of ~0.1 in the range $(D_0t)^{1/2} \ge 0.2$ mm. By using the equation described above, the surface-to-volume ratio and tortuosity of the mouse lung were estimated to be 23 ± 2 mm⁻¹ and 12 ± 2 , respectively. These geometric parameters would be sensitive to the microstractural changes in alveoli and intra-acinar pathway and useful to differentiate between bronchiolar and alveolar changes in emphysematous lungs.

Figure 1 Diffusion weighted ¹²⁹Xe spectra acquired from the healthy mouse lung with a diffusion time $\Delta = 1.5$ ms.

[2] Mair RW et al. Phys Rev Lett 1999 83 3324-3327.