Increased sensitivity of ¹⁹F MR of perfluoro-emulsions using lanthanide chelates for T₁ shortening

R. Lamerichs¹, R. Wegh¹, D. Burdinski¹, S. Langereis¹, and H. Grüll¹

¹Philips Research, Eindhoven, Netherlands

Introduction

Since fluorine (^{19}F) does not occur naturally in the human body in significant amounts, MR imaging of ^{19}F containing compounds will has intrinsic high specificity, which is a major advantage for Molecular Imaging purposes. One of the major drawbacks of Molecular Imaging by MRI is the inherently low sensitivity. To increase the sensitivity, the use of perfluoro-compounds in emulsions containing particles with a size between 200-500 nm has been proposed [1]. However, the T₁ of these perfluoro-compounds is generally long compared to the repetition times that are typically used in MRI sequences, resulting in significant signal loss due to T₁ saturation. This phenomenon also occurs in ¹H imaging, in which case the signal loss can be overcome by using contrast agents that shorten the T₁, i.e. Gd-DPTA [2]. With the same compounds, the T₁ of ^{19}F compounds can also be shortened, provided they are dissolved in aqueous solutions [3]. Here we show that the T₁ of perfluoro compounds can be shortened significantly even in non-aqueous solutions by using hydrophobic gadolinium complexes that bear fluorinated ligands. With this approach a significantly increased sensitivity of ^{19}F MRI and MRS has been achieved.

Experimental

Gadolinium tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) (Gd(fod)₃) was obtained from ABCR, Karlsruhe, Germany. It was mixed with perfluorooctyl-bromide (PFOB) which was obtained from Fluorochem, Old Glossop, UK, to give a 0.16 molar solution. This stock solution was diluted with different amounts of PFOB to give the solutions (each about 400 µl) used in this work. MR imaging was performed on a Philips Achieva clinical scanner, 3T dual-quasar, Philips Medical Systems, Best, the Netherlands. T₁ values were determined using an inversion-recovery spectroscopy sequence. The images were recorded with a gradient echo sequence with RF spoiling (T₁ -FFE). A specially designed ¹⁹F small-volume coil was used for both imaging and T₁ measurements.

Results and discussion

Experimental data obtained at 3 Tesla are shown in Table 1. $Gd(fod)_3$ can decreases the T_1 of PFOB significantly. The T_1 values were used to determine the r_1 as shown in Figure 1. For this specific gadolinium complex the r_1 is 1.6 mM⁻¹s⁻¹. This value is lower than for most water soluble chelates (about 4 mM⁻¹s⁻¹). The relaxation mechanism is still under investigation, but considering PFOB being a very poor ligand for metal ions it is reasonable to assume that relaxation resulting from 2nd and out-sphere interactions dominates. The T_1 -weighted field-echo images are shown in Figure 3. From the line profiles it can be deduced that the signal intensity increases by a factor of about 10 for the 10 mM solution.

Conclusion

The sensitivity of ${}^{19}F$ MRI and MRS of perfluorinated organic compounds is increased significantly by T_1 shortening of the ${}^{19}F$ resonance in the presence of suitable lanthanide complexes.

References

1 AM Morawski, PM Winter, X Yu, RW Fuhrhop, MJ Scott, F Hockett, JD Robertson, PJ Gaffney, GM Lanza, SA Wickline, Magn. Reson. Med. 52, 6, 1255 (2004) 2 RE Hendrick, EM Haacke, JMRI 3, 137 (1993)

3 AV Ratner, S Quay, HH Muller, BB Simpson, R Hurd, SW Young, Invest. Radiol. 24, 224 (1989)

Sample		19 F T ₁ at 3 Tesla
1	Pure PFOB	1318±10 ms
2	$2.5 \text{ mM Gd}(\text{fod})_3 + \text{PFOB}$	211±0.5 ms
3	$5.0 \text{ mM Gd}(\text{fod})_3 + \text{PFOB}$	109±0.7 ms
4	10.0 mM Gd(fod) ₃ + PFOB	60±1.0 ms

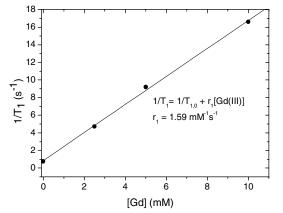


Fig. 1. Longitudinal relaxivity of $Gd(fod)_3$ in PFOB.

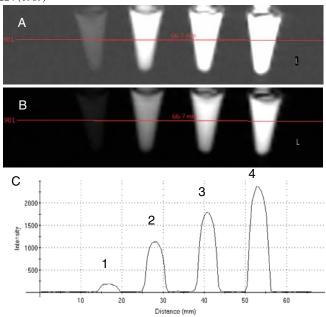


Fig. 2. T_1 -FFE image of the 4 samples from table 1. A and B are the same images, but with different window setting in order to show the image of vial 1 (pure PFOB) better in A. The window levels in B are the default setting from the scanner. C shows the profile along the line indicated in the images.