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Introduction: Static field inhomogenieties due to magnetic susceptibility differences between adjacent tissues or at air-tissue 
interfaces lead to signal loss in images, and degrade the quality of MR spectroscopy data. Hence quantifying the susceptibility 
effects is important for correcting for these effects as well as for various applications like geometric distortion correction, 
modeling effects of respiration on MR signal in fMRI, and better 3D shimming [1-5]. Several research groups have investigated 
a fast, Fourier Transform based method for magnetic field calculations [2,5,6], that utilizes the fact that the expression for the 
magnetic field deviation Bd(r) at a location r, due to a source magnetization distribution M( r’ ), is a convolution of the Green’s 
function and the magnetization.  
 The magnetization of any non ferric material is proportional to the susceptibility at a given location i.e.,   Mz( r’ ) ≈ 
χ( r’ )*B0/µ0  (assuming B0 is along z direction).When the object size is small compared to the size of the field of view (FOV), 
the previous work in the literature has shown that the calculated field distribution based on an analytical 
solution agrees well with theoretical solutions. However, when the object size increases, the calculated 
field distribution deviates considerably from the theoretical values. In an attempt to reduce the error in the 
calculated field maps, we present here an improved modification of the method. We demonstrate the 
success of our method by considering the field distribution due to a sphere, which has a susceptibility 
difference inside and outside the sphere.  
 

Theory and Methods: In the case of MR imaging, we are only interest in the field component parallel to 
the main field strength, B0. The z-component of the magnetic field distribution Bdz(r) at a point r due to a 
susceptibility distribution χ ( r’ ) is given by Eq(1) where Gz(r-r’) is the Green’s function given by Eq(2): 
 
After applying the Fourier 
transformation (FT) and 
inverse Fourier 
transformation on both 
sides of Eq(1) and with 
Eq(2) as well as Fourier 
convolution theorem, Eq(1) 
can be rewritten as Eq(3). 
Thus, the algorithm for 
calculating field map is 1) 
Fourier transforming the 
susceptibility (χ) matrix, 2) 
multiplying the FT[χ (r)] with the Green’s function in the k-space domain, and 
3) taking the inverse-FT of the product of the two functions. 
When the field of view is infinite, Eq(5) can be analytically derived. Its result 
lead Eq(1)  to Eq(5) with Gc(k) ≡ µ0 [1/3 – kz2/(kx2+ky2+ kz2)]. However, 
when the field of view is finite, the Green’s function in the k-space domain 
Gd(k) = FT[ µ0 (2z2-x2-y2 )/ 4π (x2+y2+ z2 )5/2] from eq (3) has to be 
numerically calculated. We will show below that such a correction between 
Gd(k) and Gc(k) is significant. To evaluate the results from both Gd(k) and 
Gc(k), we simulate a series of field distributions based on spheres of radii 8, 
16, 32, and 48 pixels in a finite size 3D matrix of dimensions 128x128x128 
pixels. In all the simulations, a susceptibility value of -9 ppm was assigned to 
the sphere and a value of 0 was assigned to the region outside the sphere. In 
each case we simulate two field maps, one using Gc(k) and the other one 
using Gd(k). We compare results generated from Gc(k) and Gd(k) as well as the theoretical field map. 
 

Results: To quantify the error distribution over the entire 3D volume and also to see the effect of increasing object size on the error, the values corresponding to 90th 
and the 99th percentile pixels are calculated for different radii in Table 1. The percentile values are to be interpreted as: 90% or 99% of the pixels within the entire 3D 
field of view has an absolute error less than the specified ppm value in the table. Table 1 shows that the errors are dramatically reduced with this new k-space filter 
function Gd(k). Specifically, for R = 8 and 16, the errors are reduced by nearly a factor of 10. To show this more clearly, we plot the error as a function of position for 
R=32 (Fig 1b), R=8 (Fig. 1c) and R-16 (Fig.1d). Since the field itself in the center of the sphere is zero, the percentage error cannot be calculated inside the sphere and 
hence those values are absent in the plots. Clearly, from Fig 1, the field predicted when Gd(k) is used, is closer to the theoretical value than that from Gc(k). Figure 2 
maps the absolute field errors in a plane with the sphere of radius 32 pixels with 2a and 2b corresponding to results from using Gc(k) and Gd(k), respectively. In order 
to ignore the large errors due to ghosting artifacts at the boundary of the spheres, and better visualize the error distributions outside the spheres, the gray scales in image 
are adjusted between 0 to 20% of the maximum absolute theoretical field (i.e., 1.2 ppm in this case).  
 

Discussion:  In general, the Fourier method suffers errors from mainly two factors: discretization and finite field of view. The former has not been studied yet. The 
latter introduces two types of errors. First, because of finite field of view and calculations of Fourier transformations, the calculated field distributions becomes a result 
from periodically repeated susceptibility sources rather than one susceptibility source. This fact leads to large errors at the edges of the field of view, unless the source 
object becomes small compared to the field of view [2, 7]. This type of error decreases when the object size decreases with respect to the field of view, as shown in fig 
1c and d, and in the Table 1. Second, the significant ghosting artifact at the edges of the spheres is also due to the finite field of view, which will not be removed. In 
summary, we have demonstrated that the Green’s function generated from the discretized Fourier transformation significantly reduces the error in the Fourier based 
method of calculating the magnetic field due to susceptibility distributions. 
 
References: (1) Jenkinson M. et al MRM:52:471 (2)Marques J.P. et al Conc. Magn. Reson. B:25:65 (3)Raj D et al Phys. Med. Biol. 45:3809 (4) Jezzard P et al., 
MRM:34:65 (5)Koch et al Proc ISMRM-06,Seattle p518 (6) R. Salomir, et al Concepts Magn. Reson B., 19B, 26-34 (7)Ledbetter M.P. et al J Chem. Phys. 121:3:1454. 
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Field error corresponding to 
Gc(k)

Maximum 
absolute Field 
deviation=5.9
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