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Introduction: The scan time reductions afforded by parallel imaging are well known to come at the cost of noise amplifications (characterized by the g-factor) that can 
corrupt image quality, essentially limiting maximal practical acceleration. Recently, a promising method was proposed for reducing g-factor-related noise [1] by taking 
advantage of the fact that at acceleration factors approaching the number of coils, the parallel image reconstruction matrix tends to be dominated by one singular value 
and vector.  Larkman et al suggested searching for a multiple of this dominant singular vector which, when subtracted from the image, minimized joint entropy (JE) 
between the accelerated image and a reference image. This algorithm is attractive because its capabilities improve as acceleration factor increases, but it is 
computationally intensive.  We propose a method that uses a similar principal-component approach, but eliminates the need for a search, producing results similar to the 
JE approach in a single easily-computed step.  This simple algorithm, which may be executed in real time as images are acquired and reconstructed, should allow 
significant reductions in g-factor-related noise for highly accelerated scans with the aid of a reference image of either similar or different contrast.   

Theory: Cartesian SENSE image reconstruction involves inversion of an encoding matrix C composed of complex coil sensitivities at each set of aliased positions in 

the target image.  C can be factorized using a singular value decomposition (SVD) as C = USV+. Generalizing the Larkman et al notation in a bra-ket formulation, the 
inverse matrix, or reconstruction matrix, can be written as 11
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k
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k

u  are columns and rows of the V and U +  matrices,  
respectively, 

k
s is the k-th diagonal element of the diagonal S matrix, and the sum over k runs from 1 to the acceleration factor.  If the unfolded pixels are represented 

in a complex vector 'X X dX= + with true pixel intensity 'X  and noise contribution dX , and the folded pixels are represented in a complex vector 
'S S dS= +  once again separating true pixel intensity 'S  from noise contribution dS  , then the SENSE-reconstructed image (complete with amplified noise) is 

inv
X SC=  and the true noise-free image intensity is 1 1
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= − = − = − ≡ −∑ ∑ .  Here, kSδ is an unknown 

scalar value defined by the inner product of k-th vector 
k

u  with the unknown noise vector dS . At high accelerations, C becomes ill conditioned and, as a result, 

inv
C  is dominated by the first few singular values and singular vectors. Thus, only one or a small number of complex quantities 

k
Sδ need be found, and the appropriate 

multiples of 
k

Sδ with the corresponding singular values and vectors subtracted from the noisy reconstructed image, to estimate the noise-free image intensities.  The 
technique proposed by Larkman et al uses an exhaustive search to find the value of a single dominant 

k
Sδ which minimizes joint entropy between the resultant image 

and a reference image.    We propose that algebraically solving for 
k

Sδ  using a simple least-squares fit to a reference image can yield results similar to those of the JE 
search, but in a fast and computationally efficient manner.  In particular, for one dominant singular value, we can write 1
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usual Moore-Penrose least squares solution, ( ) ( )1
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≈ − .  Generalization to multiple values of 
k

Sδ  is trivial, with 1v  being replaced by a 
matrix containing a larger subset of the columns of V.    
Methods: The method was tested in simulations using T1- and T2-weighted brain images with and without lesions, as well as in phantom acquisitions using 8- and 32-
element arrays at 1.5T.  Various accelerations were tested by decimating fully-sampled data.  All reference images were low-resolution images of the sort which are 
typically acquired as coil sensitivity references in a clinical setting.  After a SENSE reconstruction was performed, we either calculated 

k
Sδ  for one or more singular 

values/vectors, or else used an 
implementation of the Larkman et al 
procedure, searching in the complex 
plane for a single 1Sδ  that minimized JE. 
Results were assessed by: a) visual 
comparison with the gold standard 
unaccelerated image, b) calculation of 
modified g-factor maps, and c) 
subtraction from the gold standard. 
Results: In all trials where reference and 
target image were of similar contrast, our 
method of calculating 

k
Sδ greatly 

reduced noise in the SENSE image. 
Discrete lesions present in the simulated 
accelerated brain images but not in the 
references were seen to be preserved. Our 
search-free method did not produce 
significant artifacts in noise-free 
simulations.  In general, more effective 
noise reduction was observed for larger 
numbers of

k
Sδ values used, as is to be 

expected from theory.  JE reconstruction 
time was approximately 10 hours in our implementation, as compared with approximately 10 seconds for our least-squares estimation technique.  Indeed, due to the 
dramatically increased computational burden for a multidimensional search, the JE method is currently practical only for determination of a single 1Sδ .  When only a 
single value 1Sδ was used for each set of aliased pixels, the value determined in the JE search was generally very nearly equal to the value determined by least squares 
fitting.   
Discussion and Conclusions: By calculating 

k
Sδ from a SENSE-reconstructed image and low-resolution reference image, we are able to significantly reduce g-factor-

related noise in highly accelerated scans. Although the method relies on prior information in the form of a reference image, the algorithm remains substantially 
protected against simple replication of reference image content, since aliased sets of voxels may only be changed in fixed ratios as defined by the singular vectors 

k
v .  

This prevents unrestricted modification of any given pixel value to match prior information. Noise-reduction using our least-squares approach is on the order of 3 orders 
of magnitude faster than for the algorithmically difficult JE approach, which yields similar results for a single 1Sδ value.  Moreover, the least-squares approach allows 
incorporation of the contributions of multiple singular values/vectors for each set of aliased voxels, with the important caveat that, as more components are used, the 
result is less effectively protected against replication of prior information from the reference image. The least-squares method works best when target and reference 
images are of same contrast, and it has at present only been applied for regular Cartesian undersampling, though the algorithm is efficient enough that other sampling 
trajectories might be considered. Overall, the approach proposed here is a promising candidate for rapid noise reduction in highly-accelerated images.   
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Fig. 1: Simulated brain images.  Upper left: 
Unaccelerated gold standard.  Upper right: 4x SENSE 
reconstruction.  Lower left: JE noise reduction.  Lower 
right: Least-squares noise reduction. 

 

 

 

 
Fig.2: Phantom data obtained with a 32-element (4 x 4 x 
2) body array [2].  Upper left: Unaccelerated gold 
standard.  Upper right: 32x (8x4) SENSE reconstruction.  
Lower left: 1-component least squares noise reduction. 
Lower right: 9-component least-squares noise reduction.  
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