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Figure 1 Computer heart model (a). The temporal evolution along the dotted line 
is shown in (b). The total root-mean-square (RMS) reconstruction errors for this  
x-t dataset are shown in (c). Below a certain reduction factor (depending on the 
sparsity of the data) the L0 reconstruction results in an exact replica of the fully 
sampled data.  
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Figure 2 Cardiac frame of a long-axis cine acquisition (a) and the temporal evolution along the dotted line for the L0

reconstruction (b) and the k-t BLAST reconstruction (c). Magnified views of the corresponding areas are shown in (d) and 
(e). Intensity profiles along the dotted line in (e) for 2 different k-t BLAST reconstructions with 11 and 33 training profiles 
and the L0 recon are shown in (f). 
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Introduction: 
Dynamic images of typical objects in MRI are highly redundant in space and time. Methods have been proposed which exploit this spatiotemporal correlation to allow 
speeding up the data acquisition process by undersampling on a regular grid in k-t space (1). With k-t BLAST temporal blurring might be introduced due to partial 
volume effects in the training data. At low acceleration factors the blurring of coarse structures is subtle but it can become noticeable for instance in valve imaging 
where small structures move at high temporal frequencies. To reduce the partial volume effect in the training data, the number of training profiles can be increased at 
the cost of a lower net acceleration factor.  
Recently, a new method was proposed that allows an exact image reconstruction from 
randomly undersampled Fourier samples (2) by minimizing the L1-norm of the image in a 
sparse domain. The main result of (2) states, that for a signal f(t), t ∈ T which is sampled on a 
nonuniform, random sampling domain Ω ⊂ T the missing coefficients f(t), t ∉ Ω can be 
recovered if the Fourier transform of the signal f(ω) is sparse in a particular domain. The 
recovered signal g(ω) can be computed by solving the constrained optimization problem 

( )
g g

min g ω∑   s. t. f(n) = g(n), n ∈ Ω. No training data are needed for this reconstruction 

as it is solely based upon the sparsity of the data. If only small parts of the image move at the 
full temporal bandwidth, the Fourier transform along the temporal dimension (x-f space) 
provides a sparse representation (3) of the data and no further sparsifying transform such as the 
wavelet transform (4) is needed.  
 
Methods: 
Data were acquired on a 1.5T Philips Achieva whole body MR system (Philips Medical 
Systems, Best, NL) using a 5-element coil array. A balanced SSFP sequence with high 
temporal resolution for resolving the dynamics of valvular leaflets was used with the following parameters: spatial resolution=1.6 x 1.6 x 8 mm3, TR=3.4 ms, α=60°, 
cardiac phases=78. The k-space was randomly undersampled along the phase encoding and temporal dimensions by a factor of 3 resulting in a total scan duration of 
about 17s allowing for single breath hold acquisitions. With k-t BLAST, an undersampling factor of 4 was used which corresponds to a net acceleration factor of 3.36 
and 2.63 with 11 and 33 training profiles, respectively. The reconstruction of the randomly undersampled data was done offline using MATLAB (The MathWorks, 
Natick, MA, USA). Although a convex L1 minimization problem is mathematically tractable it is computationally demanding due to the large number of free variables. 
Therefore a simple steepest descent algorithm along the energy difference between the reconstructed and the measured x-f space was used. Due to the properties of the 
point-spread function of a random sampling scheme this results in a minimum L0 norm of the x-f space which features the same properties as the L1 norm.  
 
Results: 
Figure 1 shows simulation results based on a noiseless model data set. It is seen that minimum L0 norm reconstruction from randomly undersampled data yield an exact 
reconstruction of the object up to a reduction factor of four while the root-mean-square (RMS) error in k-t BLAST is significantly larger. Figure 2 compares in-vivo 
results acquired with k-t BLAST and random undersampling. As expected, an increased number of training profiles improved the k-t BLAST reconstruction, yet the L0 
norm reconstruction resulted in better temporal depiction of the valve structure in particular.  
 
Discussion: 
Nonlinear reconstruction methods for undersampled 
data feature interesting properties. Up to a certain 
acceleration factor (depending on the sparsity of the 
data) this reconstruction is exact, resulting in 
increased image quality and temporal fidelity 
compared to e.g. the k-t BLAST reconstruction 
method. Since the method relies only on the 
sparsity of the data and not on an additional low 
resolution training dataset, it can also recover low 
signal intensities at high temporal frequencies that 
may get attenuated in the k-t BLAST 
reconstruction. The critical acceleration factors 
below which the reconstruction errors remains 
negligible depends on the sparsity of the data (and 
implicitly on the signal-to-noise ratio) as described 
in (2). Higher acceleration factors result in similar 
reconstruction RMS errors for both methods 
although the trait of the artifacts is different. The L0 
reconstruction features incoherent, noise-like 
artifacts which might be less disturbing to the 
observer’s eye than ghosting or temporal filtering. 
Acceleration factors beyond the critical factor may 
be achieved by combining random undersampling with coil encoding principles such as SENSE (5).  
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