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INTRODUCTION 
Diffusional motion of water molecules in tissue can be observed via magnetic resonance (MR) using different experimental schemes. It is possible to obtain different 
information from tissue if different parameters of the experiment are varied. It was shown recently that a disordered media model applied to the diffusion-attenuated 
MR signal obtained from excised tissue specimens is capable of characterizing the diffusion-time dependence of the MR signal accurately [1]. In order to investigate the 
contrast that can be achieved using this model, we have performed experiments on excised rat hippocampi. Our findings suggest that a previously unavailable contrast 
can be observed from data collected with different diffusion gradient strengths and diffusion times using the disordered media model. 
   

BACKGROUND AND SIGNIFICANCE 
Many biological tissues including the neural tissue have a hierarchical structure that may exhibit significant self-similarity since cytoskeletal proteins, cellular 
organelles and complicated arrangement patterns of neurons and glia in tissue may present barriers to water molecular motion on different length scales. Sensitizing the 
MR signal to random incessant movements of the molecules make it possible to probe length scales that can not be resolved by conventional MR imaging methods. 
Moreover, varying the diffusion time of the MR acquisitions provide a means to observe water diffusion at different temporal or spatial scales. A nonlinear dependence 
of the mean-square-displacements (MSDs) on the diffusion time gives rise to the well-known phenomenon of anomalous diffusion, which occurs in systems exhibiting 
fractal behavior.  
 

In fractal environments [2], Brownian motion of particles are restricted in all length scales giving rise to the scaling relations <r2> wdt /2∝ , and 2/)0( sdtrP −∝=  where 

<r2> is the mean square displacement and P(r=0) is the return to origin probabilities for the water molecules undergoing diffusion during time t. The scaling exponents 
dw and ds are called the fractal dimension of the random walk and the spectral (fracton) dimension respectively. The diffusion process is called �normal� if dw=2, where 
the cases dw>2 and dw<2 correspond to sub- and super-diffusion regimes (anomalous diffusion) respectively. These two scaling exponents are related to the fractal 
dimension, df, through the relationship df=dw ds/2 [3]. In one-dimensional q-space mesurements, it is the projection of the propagator onto the axis, whose direction is  
determined by the diffusion gradient, is measured. Therefore, one effectively has a one-dimensional space, which can be quantified by the effective indices ds� and df�. 
 

METHODS 
To investigate the scaling behavior of the diffusional processes in neural tissue, we acquired a series of diffusion-weighted MR images from three excised rat 
hippocampi with varying diffusion gradient strengths and diffusion times. The imaging parameters were: B0=14.1T, TR=1000ms, TE=12.6ms, resolution= 
(78x78x500)µm3, matrix size=(64x64x3), δ=2ms. The diffusion gradient strength varied between 0 to 2935mT/m while the q-space acquisition was repeated 10 times 
with ∆ values ranging from 12 to 300ms on a logarithmic scale.  
 
RESULTS 
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CONCLUSION: The formalism developed to characterize diffusional processes in fractal environments was applied to q-space MRI data collected from excised 
neural tissue. The functional fits were very satisfactory indicating the appropriateness of the approach. This method can be used to understand the variability of data 
acquired with different values for diffusion time. The method also provides a novel contrast mechanism that may enhance the utility and specificity of diffusion-
weighted MRI/S to better assess the structural changes that occur during development and various neuropathologies. 

 

Plots on the right show the diffusion-time 
dependence of the mean square 
displacements and return to origin 
probabilities computed from selected ROIs 
shown on the left figure. The linear 
relationships on the double logarithmic 
plots indicate the existence of the scaling 
relations characterized by power laws. The 
slopes of these lines are used in the 
computation of the scaling exponents dw 
and ds�. 

On the left are the images generated by a pixel-by-pixel computation of the scaling exponents 
as described above. Different scaling behavior is observed in different regions of the 
hippocampus. Contrast appears to be influenced by unique cytoarchitectural features of 
different hippocampal regions. For instance, the densely packed myelinated regions like the 
fimbria and the dorsal hippocampal commissure appear to be in the subdiffusive regime 
where the characteristic lengths associated with the diffusion process scales slowly in time.  
 
The contrast achieved using the proposed model appeared quite consistent in all three 
samples imaged with identical parameters. The walk dimension computed from the free water 
was 2.014, which is very close to the expected value of 2.0 for normal diffusion. 
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