Functional Imaging of the Prostate: Quantitative DCE-MRI and its Repeatability

L. E. Kershaw¹, C. E. Hutchinson¹, P. D. Allen¹, and D. L. Buckley¹

¹Imaging Science & Biomedical Engineering, University of Manchester, Manchester, United Kingdom

Introduction: The adiabatic approximation to the tissue homogeneity (AATH) model [1] has been used in the analysis of dynamic contrast-enhanced (DCE) MRI data to obtain estimates of flow and microvascular permeability in the prostate [2]. Estimates of extravascular-extracellular volume (v_e) and transit time (T_c) were found to be imprecise in this previous study, and this has been addressed in a new prospective study of patients with benign prostatic hyperplasia (BPH).

Methods: Data were acquired from 12 patients with BPH on a 1.5 T Philips Intera system using a SENSE cardiac coil. T_1 was measured using a 3D inversion-recovery turbo-FLASH (IRTF) sequence with 5 TIs (~4 min acquisition). This method was validated using a Eurospin T_1 phantom, by comparing it with a spin-echo inversion recovery (SEIR) method. DCE-MRI data were acquired using a 3D FLASH sequence (30° flip angle; 40x40x10 cm FOV; 176x176x20 matrix; TR/TE 3.37/0.86 ms). SENSE was used to maximise temporal resolution whilst using an increased TR to boost baseline SNR [3,4]. DCE-MRI data were analysed using the AATH model to give estimates of T_c , v_e , flow F and extraction fraction E. Repeatability was assessed by performing two scans, one week apart, on each patient.

Results: Figure 1 shows phantom T_1 values measured with IRTF and SEIR. The solid line is the line of identity. The log-transformed limits of agreement for the Bland-Altman plot are 0.98 and 1.05. The mean values for the fitted DCE-MRI parameters and T_1 for whole prostate are shown in table 1, with standard deviation and test-retest coefficient of variation (CoV). Figure 2 shows example uptake curves, model fits, AIFs and fitted parameters for both visits of a single patient.

Discussion: The IRTF method for measuring T₁ shows excellent agreement with the gold-standard SEIR. T₁ measurements made in vivo have very good repeatability, and were longer than previously reported [5]. The AATH model is ill-posed and some of the parameters are interdependent, making model fitting challenging. Increasing the length of the dynamic acquisition has led to improvements in estimation of v_e (all estimates were <1) and in this preliminary analysis of the data the test-retest CoVs are comparable with the 15-37% obtained with a simpler model [6]. However, the repeatability of T_c was poor. This may reflect a genuine heterogeneity of T_c within the gland [7] or a particular sensitivity to motion artefact. A combination of image registration with the analysis of homogeneous sub-structures (e.g. segmented glandular or stromal BPH and peripheral zone) may help to reduce this variability. In conclusion, we have developed a quantitative protocol for functional imaging of the prostate that may also have potential applications in other areas of the body.

	E	F _b	Tc	Ve	T ₁
		/ml ml ⁻¹ min ⁻¹	/min	/ml ml ⁻¹	/ms
Visit 1	0.72 ± 0.11	0.19 ± 0.07	0.75 ± 0.41	0.32 ± 0.11	1392 ± 70
Visit 2	0.71 ± 0.15	0.21 ± 0.09	0.71 ± 0.31	0.35 ± 0.13	1341 ± 105
Test-retest CoV	21	31	57	18	4.1

Figure 1 – Scatterplot and Bland-Altman plot for T_1 measured for Eurospin phantom tubes, IRTF vs SEIR method

Table 1 – Mean value, SD and test-retest CoV for DCE-MRI parameters, and T_1 for

Acknowledgements: Funded by the Prostate Research Campaign UK. LEK is supported by a MRC studentship. We are grateful for help from Liz Moore of Philips Medical Systems UK.

References:

1800

- [1] St Lawrence et al JCBFM 1998;18:1365
- [2] Kershaw et al MRM 2006;56:986
- [3] Weiger et al MRM 2005;53:177
- [4] Buckley et al Proc ISMRM 2005;557
- [5] Buckley et al Radiology 2004;233:709
- [6] Roberts et al JMRI 2006;23:554
- ° [7] Koh et al Phys Med Biol 2001;46:1519

Figure 2 – Uptake curves, model fits and AIFs (divided by 10 for clarity) for the same patient, visits one (L) and two (R)