
Figure 1: (a) MPRAGE structural image and (b) hyperoxia CBV map 
of the same slice (from coregistered images) from a typical subject. 
Scale is in ml blood /100g tissue. 
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Introduction 
The gold standard method for measuring cerebral blood volume (CBV) with MRI is dynamic susceptibility contrast MRI, which relies on injecting a bolus of 
paramagnetic contrast agent into the blood stream, and tracking the induced signal changes (2). As well as requiring an intravenous injection, the DSC MRI 
method also relies on calculating an arterial input function for the subject, which can be quite challenging. Other non-invasive methods using inversion recovery 
and modelling have been proposed to measure CBV changes during functional activation (3) but these are relatively time consuming, requiring multiple inversion 
times, and have not yet been integrated into simultaneous acquisition sequences (such as BOLD/CBF). 

In this study we hypothesized that CBV could be measured via the BOLD signal changes that are induced when the subject breathes an altered 
concentration of oxygen in their inspired gas mixture. Breathing hyperoxic gas mixtures has proven to be a safe and effective method of obtaining image contrast 
in T2

* weighted MRI scans (4-6). In this paper we show that by combining a paradigm of 50% inspired oxygen with normoxic blocks during a BOLD/ASL dual 
acquisition sequence, it is possible to obtain BOLD, perfusion and CBV data within a single session with an effectively non-invasive procedure.  CBV may be 
calculated using a method originally developed for a slow infusion of an intravascular contrast agent (7) which compares the signal strength during the baseline 
period with the steady-state signal reached during infusion, normalized to a primarily blood-filled voxel. Due to the relatively fast washout time achieved with the 
hyperoxic contrast used in the present study a more robust boxcar design can be employed instead of a single infusion, leading to a more efficient estimation.  

 
Methods 
In a pilot study images were acquired from 6 subjects (4 male, mean age 29±3.7 yrs) using a combined Pulsed ASL (Q2TIPS) and gradient echo EPI BOLD 
sequence on a 3T Siemens Trio, with an 8-channel head coil. The paradigm consisted of 2 x 6-minute blocks of hyperoxia, separated by 6 minutes of normoxia in a 
28 minute protocol. Pre-processing was performed using FSL (8). The BOLD data were then masked using segmented grey and white matter masks from high-
resolution structural images and analysed in Matlab.  The CBV was calculated using an adaptation of the equation presented by Newman et al (7), where ρ (the 
density of brain tissue) is 1.04 g/ml; h = (1 � Hct)/(1 - r * Hct ) corrects for the fact that the haematocrit is greater in large vessels than in brain microvasculature 

(9), r was assigned a value of 0.85 based on PET data, n is the number of ratios measured within that portion of the 
infusion during which the ratio is stable, Sr(j) and Sv(j) are the jth signal measurements during the plateau portion in the 
tissue voxels and vein voxels, respectively, and Sr,0 and Sv,0 are the average signals in tissue and vein during the baseline 
period prior to arrival of the hyperoxic contrast. Unlike the contrast achieved with a gadolinium infusion contrast, the 
strongest contrast with hyperoxia occurs in veins with less contrast in arteries. This is due to the contrast arising from 
changes in deoxyHb:oxyHb, and SaO2 is already at approximately 98% in arteries during normoxia. Axial slices were 
chosen as the sagittal sinus vein is very easy to locate and often completely encompasses more than one voxel and is thus 
ideal for calculating the denominator of the equation. 

 
 
Results and Discussion 
Figure 1b shows the CBV map of a single axial slice from a representative subject. When compared with the high-resolution structural image (Figure 1a) it is clear 
that grey matter areas have a significantly higher CBV than white matter regions, as expected. The mean CBV was calculated to be 3.77±1.05 ml/100g globally, 
3.93±0.90 ml/100g in grey matter, and 2.52±0.78 ml/100g in white matter. The mean GM/WM ratio was thus found to be 1.56. These values are found to be in 
close agreement with previous studies (see Table 1, other data from Roland 1993, page 483 (1)). The experimental paradigm was designed to produce no net 
change in CBF with increased levels of inspired oxygen. Accordingly, no significant change in the mean ASL signal due to increased FiO2 was detected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The global CBV value and that for grey matter are lower than expected but still within the experimental error of the other studies quoted. This may in part be due 
to the greater sensitivity to capillary and venous compartments, and lack of sensitivity to the arteriole and arterial contribution. This lower value contributes to the 
GM/WM ratio also being smaller than expected. However; the values are comparable to those obtained in a SPECT study which also compared the CBV during 
normoxia and during inhalation of 50% oxygen, which found that the global CBV during normocapnia and inhalation of 50% O2 was 4.17±0.56 ml/100g (10).  
 
Conclusions 
We have demonstrated the efficacy of inspired oxygen as a non-invasive intravascular contrast agent in combination with a model of steady-state contrast. The 
technique has been shown to be in very good agreement with other recognised methods of measuring cerebral blood volume. The hyperoxia contrast method has 
several significant advantages over conventional CBV techniques: it can be repeated immediately; the absence of need of an intravenous bolus injection of 
paramagnetic contrast agent, making it suitable for patients for whom these are contraindicated; and that it can be used in conjunction with studies already 
employing respiratory-based stimulation or contrast such as those attempting metabolic measurements. 
 
References 
1. Roland PE. Brain Activation. John Wiley & Sons, inc; 1993. 
2. Kuppusamy K, et al Radiology 1996;201(1):106-112. 
3. Gu H, et al Neuroimage 2006;30(2):377-387. 
4. Rostrup E, et al. NMR Biomed. 1995;8(1):41-47. 
5. Losert C, et al. Magn Reson Med 2002;48(2):271-277. 

6. Bulte D, et al. J Magn Reson Imaging 2006;24:886-890. 
7. Newman GC, et al. Magn Reson Med 2003;50(4):844-855. 
8. Smith SM, et al. NeuroImage 2004;23(SUPPL. 1):S208-S219. 
9. Tudorica A, et al. Magn Reson Med 2002;47(6):1145. 
10. Reinstrup P, et al. Anesthesiology 2001;95(5):1079-1082. 

 

   CBV ml/100g  

Study n Global Grey Matter White Matter 

Hyperoxia 6 3.77±1.05 3.94±0.90 2.52±0.78 
Grubb et al 8 4.3 - - 

Phelps et al 5 4.2±4.0 - - 

Lammertsma et al 8 - 5.9±6.6 2.4±0.3 
Yamaguchi et al 14 - 4.3±0.5 2.2±0.6 
Perlmutter et al 32 4.5±0.1 - - 

Roland et al 11 4.7±0.5 4.9±0.5 2.4±0.6 
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Table 1: Comparison of values measured using hyperoxic technique and 
other standard methods (1) 
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