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Introduction                   Supported by the Netherlands Organization for Health Research and Development, project 945-05-016 
Torsion is the wringing motion induced by contracting obliquely oriented myofibers in the left ventricular (LV) wall, meant to squeeze blood from the 
ventricle. The following rapid untwisting sucks blood from the left atrium (LA). Since torsion is directly related to myofiber orientation and structure, it is 
thought to be an important quantifier for the condition of the heart.  
In literature torsion was described in several ways [1,2,3]. As the difference between apical and basal rotation (twist), or as twist per unit length, which 
makes it comparable between hearts. Most directly related to fiber structure however, is to describe it as the circumferential-longitudinal shear (CLS) 
angle. Furthermore, it is not clear how to define the axis of rotation (AoR), which makes circumferential segmental analysis of torsion questionable. 
Previously, analysis of torsion was mostly limited to systole and only a limited part of the cardiac wall. 
In this study, a method is proposed to calculate torsion automatically from tagged MR images over systole and diastole, using displacement data from 
the entire cardiac wall as seen in short axis slices with high temporal resolution (TR). It is investigated whether it is reasonable to calculate torsion on a 
segmental basis and the method is used to calculate torsion in five healthy volunteers. 
Methods  
Complementary, sinusoidally tagged short-axis cine MR images are made in two orthogonal directions with an SSFP sequence with a TR of 14 ms [4] at 
apical and basal levels. Prospective triggering was used. With these sets of images, extended harmonic phase (HARP) tissue tracking [5] is performed 
after contouring the LV in the images. From the obtained displacements, the rotation around the center of mass of the LV is calculated for every correctly 
tracked point inside the contours in every timeframe. The radius is calculated for every point inside the contours as the distance between the point and 
the AoR in every timeframe. This means that both the AoR and the radius vary over time. The CLS angle T is then calculated as  
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with Θ the mean rotation relative to the first timeframe, r the radius, t the cardiac phase number and D the distance between the two slices. To determine 
the influence of the location of the AoR on the calculated torsion, a test case was used. This was an incompressible deforming cylinder with 
displacements given by analytical expressions [5]. Global and circumferential segmental (six segments) torsional deviation with a wrongly defined AoR 
were calculated. This was done for slices at both ends of the cylinder, with AoR moved separately, in the same or in opposite direction in both ends. The 
% displacement in AoR from the center of mass relative to the mean radial length is indicated by the parameter AoRdisp. To illustrate the procedure, 
global, transmural and segmental rotation and torsion were calculated between apex and base in five healthy subjects. Peak rotation and peak torsion 
were compared over regions using a paired Student�s t-test, where p-values below 0.05 were considered significant. 
Results 
In the analytical test case, the largest deviations were found in torsion with oppositely displaced AoR between slices. These deviations were 0.05% per 
AoRdisp for the global calculation and 0.9±0.44% per AoRdisp for the segmental calculation. When segmental calculations were done on human data, 
torsion was larger in the anterior and anterolateral wall than in the septum and inferior wall (p=0.08). Transmural differences in peak rotation and peak 
torsion were significant (p≤0.03): rotation was largest in the endocardium, torsion in the epicardium. Peak torsional values for the healthy subjects are 
given in table 1. In figure 1, a torsion curve for a healthy subject is presented. 
Discussion                         Table 1. Peak CLS angles (°) for healthy subjects. Values are mean±SD. 
The global calculation 
of torsion was shown 
to be almost indepen-
dent of AoR location 
in the test case, while 
the segmental calcula-
tion was not. For a 
100% AoRdisp (AoR 
in the wall), only 5% 
deviation in global 
torsion is expected. In the human subjects, larger anterior and anterolateral torsion were found than septal and inferior. This might be due to physiology, 
but could also be explained by the definition of AoR. Presumably the mass of the right ventricle should also be included in the analysis. Miscontouring 
can as well cause differences between segments. This pleads for not using segmental torsion analysis. Calculation of torsion in transmural regions 
however, can be performed independently of AoR position. Since the fibers in the cardiac wall are known to vary in orientation in the transmural direction, 

this kind of analysis shows great promise for understanding the exact functioning and 
activation patterns of the myocardium and the cause of the smaller epicardial rotation 
and larger epicardial torsion in the healthy subjects.  
In fig. 1, it is visible that the torsion does not completely restore to zero. This is due to 
remaining torsion at mid-diastole and the applied prospective triggering (last part of 
cardiac cycle is missing). 
Conclusion 
The proposed method allows for automated calculation of LV torsion with high 
temporal and spatial resolution over the whole cardiac cycle. It was shown that 
segmental analysis of torsion is strongly dependent on the choice of the AoR. 
Transmural analysis however, was not critically dependent on the AoR and thus more 
suitable for quantifying the torsion values. Also regarding the anatomy, transmural 
analysis of torsion will be of great interest for further exploration of the mechanics of 
contraction and relaxation in the human heart. 
 

Figure 1. Transmural differences in torsion (CLS angle) in a healthy volunteer. 
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circumference 

Infero-

septal 

Antero-septal Anterior Antero-

lateral 

Infero-lateral Inferior 

Whole wall 7.0±1.7 5.9±2.6 7.1±2.4 11.1±5.5 12.3±4.8 5.9±1.0 4.3±3.0 

Endo 6.7±1.7 6.0±2.4 7.6±2.2 11.0±5.5 10.9±3.8 4.8±1.0 4.0±2.6 

Mid 7.2±1.8 6.3±2.6 7.9±3.0 11.9±6.0 11.9±4.2 5.4±1.0 4.4±2.9 

Epi 8.1±2.1 6.8±3.3 8.3±3.4 12.8±6.3 13.1±4.6 6.1±1.2 4.5±2.9 
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