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Introduction:  In the past few years, MR scanners have witnessed a large growth in number of receiver channels. Several manufacturers are now 
offering 32-channel scanners and, recently, 128-channel prototype scanners have been introduced. At the same time, reconstruction algorithms for 
parallel imaging have become increasingly complex, straining computational resources. We previously developed (1) an algorithm to reduce this 
computational burden by omitting information from physical coils or �virtual coils� (linear combinations of coils) that do not contribute significantly 
to image SNR in the region of interest (ROI). In this work, we present an efficient method to optimize the coil selection process inspired by research 
in neural networks and spin glasses (2) and apply these algorithms to 128-channel MRI.  
 
Methods:   We have adapted a combinatorial optimization method which we 
refer to as �mean-field annealing� (MFA) (2) to the problem of selecting the 
optimal set of coils or coil combinations for a given ROI and degree of 
acceptable SNR degradation. A more traditional optimization method to 
address the same problem is simulated annealing (SA) (3,4). Both MFA and SA 
are optimization techniques inspired by the statistical mechanics of systems 
with a large number of degrees of freedom and energy landscapes characterized 
by many local minima (e.g. spin glasses). In such systems steepest-descent 
algorithms will often stop at a local minimum. SA overcomes this problem by 
allowing moves that increase the energy of the system with a probability that 
depends on temperature. An annealing schedule is set up to gradually reduce 
the temperature and allow convergence towards the global minimum of the 
energy landscape. For finite annealing schedules no convergence result to the 
global minimum has been rigorously proven although, experimentally, low-
energy solutions can be found, albeit with high computational cost. MFA is 
based on an analytical approximation to SA that allows the thermal average of 
the optimization variables to be computed directly (at a given temperature) by 
solving a simultaneous set of algebraic equations (mean-field equations). An 
annealing schedule is set up in this case as well to find the lowest energy state, 
but it can be much coarser than in the SA case. 
 
Results and Discussion:  To compare SA to MFA, we ran a Monte Carlo 
simulation in which we varied the number of coils from 2 to 128. The coil 
sensitivity functions were assigned randomly and the results averaged over 30 
runs.  The cost function is given by -SNR2 plus a constraint that selects the 
number of effective coils to keep. We measured the computation time to find 
the best solution and the relative solution quality, defined as (MFA-SA)/SA, 
where MFA and SA are respectively the cost of the best MFA and SA 
solutions. The results are plotted in Figure 1. We note that MFA is at least a 
factor of 100 faster than SA over the whole range of coil numbers and that 
solution quality is only modestly affected (<0.3% worse for MFA relative to 
SA).  

We have tested this algorithm with a 128-channel GE SIGNA  prototype 
scanner. The coil we used is a torso array comprising of two panels (anterior 
and posterior), with 64 coil elements each (5). We have acquired fully sampled 
datasets using a partial-Fourier SSFSE pulse sequence (256x160). We 
undersampled the data offline (R=4) and reconstructed it with a 1D-ASSET 
homodyne algorithm and with virtual-coil elimination using MATLAB (The 
Mathworks, Natick, MA). In Figure 2A we show an example of a mid-coronal 
slice undersampled 4 times in the L/R direction and reconstructed using only 32 
virtual coils chosen to optimize SNR at each pixel. MATLAB recon with 32 
virtual coils is 2x faster than with 128 (if the arrays can be held in memory, 
otherwise virtual coils can outperform by a much larger margin). In Figure 2B 
we show the difference image between Figure 2A and the image reconstructed 
using all 128 coils. The maximum intensity of both images is clipped at a value 
of 3. In Figure 3 we show SNR in the three ROIs pictured in Figure 2A as a 
function of number  of virtual coils used in reconstruction.     
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Figure 1.   Monte Carlo simulation of solution quality and 
computation time for MFA and SA vs. number of coils. Relative 
solution quality = (MFA-SA)/SA. 
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Figure 2.  A: Reconstructed image using only 32 out of 128 coils 
that optimize SNR in ROI. B: Difference image between Figure 
2A and image reconstructed with all 128 coils (1D-ASSET 
homodyne, R=4).  
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Figure 3 Relative 
SNR as a function 
of number of 
virtual coils used 
in 1D ASSET 
Homodyne 
reconstruction 
(R=4). Colors 
correspond to 
ROIs in Figure 
2A. 
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