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Introduction: k-Space-based parallel MRI (pMRI) methods such as GRAPPA [1] and PARS [2] provide a number of advantages including fast reconstruction, 
convenient self-calibration, tolerance to calibration data errors [3], and efficient non-Cartesian data processing [4]. Surprisingly, most benefits come from their 
assumption that only a few samples from a local k-space subset contribute to the synthesis of a given datum. The reconstruction accuracy of such techniques strongly 
depends on the k-space subset selection. Increasing the size of the subset from a single sample (SMASH, [5]) to a few samples distributed in the phase encoding 
direction [1], and further enlarging it to a 2D configurations [2,6,7] led to gradual improvement of image quality for a wide variety of phased array coils. At the same 
time, enlarging the k-space subset impedes the described benefits of GRAPPA/PARS. 

In general, there is a poor understanding how to automatically control the error in the methods without resorting to larger k-space subsets. Obviously, the optimal k-
space subset depends on coil sensitivities, the placement of coils, and on the object itself for self-calibration. We present theoretical analysis of the problem and fast and 
efficient method for designing optimal k-space based parallel MRI reconstruction. 

Theory: Multicoil acquisition may be seen as multichannel convolution in k-space: Cf = s , [ ]( ) ( ), , m nm n
cγγ = −C k k . Here, ( )cγ k  is thγ  coil sensitivity of cn , f is 

vector of target k-space values indexed by n, s  is the all coil data vector, each acquired k-space sample is indexed by m. To find f, the pseudoinverse of C, P, is 
calculated and applied to s . It may be shown that k-space pMRI methods approximate P with a sparse matrix. For more accurate approximation, the sparse 

pseudoinverse γP  may be calculated for each coil γ  [8]. The approximation error is given by Frobenius matrix norm 
Fγ γ γρ = C - P C , where γC  is the thγ  coil 

convolution matrix. It may be shown that γρ  is related to power of residual aliasing in image space. Hence, the optimal 

γP  should minimize γρ . Minimization of γρ  may be done via separate minimization of ( ) ( ) ( )
2

n n n
γ γ γρ = c - p C . Here, 

( ) ( ),n n
γ γp c  are the thn  rows of γP  and γC . 

We propose to find the optimal distributions of non-zero elements in the rows of ( )n
γp  or, equivalently, the k-space 

subsets for reconstruction of the thn  sample, as the ones that minimize ( )n
γρ . Finding the exact sparse solution is of 

exponential complexity, and is intractable even for small problems. Instead, we propose a method inspired by earlier 
work on efficient construction of sparse approximate matrix preconditioners [9]. The idea is that on each step of the 

algorithm a set of nonzero entries in ( )n
γp  (or, equally, the k-space subset) is enhanced with a point that ensures the 

largest decrease in ( )n
γρ . The samples are chosen from a k-space area of limited size using an efficient recursive 

algorithm. The details of the algorithm are not presented due to space limitations. 

Methods: The BrainWeb digital phantom (http://www.bic.mni.mcgill.ca/brainweb/) was multiplied by coil sensitivities 
( 4cn = ) calculated using a B1 simulator (http://www.nmr.mgh.harvard.edu/~fhlin/tool_b1.htm). Phantom data were 

collected on GE XMR 1.5 T system (GE Healthcare, Milwaukee, WI) using 3 elements of a spine array (image size 
192x256). In either case, thirty two (32) central lines were used for calibration. Images were reconstructed from data 
uniformly undersampled with reduction factor R=2. Truncated SVD (threshold=1e-4 of the maximum singular value) 
was used for matrix inversion. 2D GRAPPA reconstruction of actual data employed samples from within a k-space 
radius of 2.5 samples. The optimized subset of the same size was calculated in ~25 s (MATLAB, standard PC). 

Results: Plots in Fig. 1a show that approximation error γρ  and measured image space RMS error correlate well 

supporting our idea that γρ  is a valid metric for optimization. The new method provides much less error compared to 

2D GRAPPA. Both adaptive and 2D GRAPPA k-space subsets are shown in Fig. 1b (reconstruction of 1st coil data). The 
coil channels contribute unevenly to the optimal reconstruction, or even don�t contribute at all (coil 3). The effect of 
optimal reconstruction on image quality may be appreciated in Fig. 2. Residual aliasing and noise are much more visible 
in 2D GRAPPA than in the image from the proposed algorithm. 

Discussion: Our studies demonstrated that errors due to the approximate nature of k-space pMRI may be reduced by 
adjusting the k-space subset automatically with the proposed method. Besides minimized aliasing, the new method 
consistently provided less noise gain than non-adaptive method. The improved conditioning may be due to the 
fact that the method chooses the k-space samples giving the most independent information from sensitivity 
encoding. The method proposed in [6] also seeks to compute adaptive subsets, but minimizes the condition 
number instead. We found that the approach may result in residual aliasing, which is minimized in our method. 

We found that the method gives the most improvement for non-symmetric arrays such as spine array. The 
results may imply that k-space pMRI techniques such as GRAPPA and PARS must be tuned as proposed here for 
each type of phased array coil. GRAPPA/PARS with small optimized k-space subsets may be of particular benefit 
for faster pMRI required in interventional/real time imaging and non-Cartesian and 3D applications. 

The theory and methods developed here are directly applicable for optimization of other k-space MRI data 
reconstruction techniques such as regridding method BURS [10] and dynamic imaging technique ktGRAPPA 
[7,11]. 
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Figure 2. Reconstruction of actual phantom data.
Images and errors (5x) are shown in top and
bottom rows, respectively. New method reduced
residual aliasing and noise gain. 
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Figure 1. Comparison of new and 2D
GRAPPA methods in simulated studies.
a: Approximation error (ρ1) and image
RMS error (RMSE) vs. k-space subset
size; b: k-Space subsets of 24 samples (a
dotted line on a). Coils contribute
unevenly to the optimal reconstruction. 
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